9,748 research outputs found
A family of filters to search for frequency dependent gravitational wave stochastic backgrounds
We consider a three dimensional family of filters based on broken power law
spectra to search for gravitational wave stochastic backgrounds in the data
from Earth-based laser interferometers. We show that such templates produce the
necessary fitting factor for a wide class of cosmological backgrounds and
astrophysical foregrounds and that the total number of filters required to
search for those signals in the data from first generation laser
interferometers operating at the design sensitivity is fairly smallComment: 4 pages, 4 figures, uses iopart.cls, accepted for publications on
Classical and Quantum Gravity (Special Issue, Proceedings of Amaldi 2003
Recommended from our members
Discovery of high-entropy ceramics via machine learning
AbstractAlthough high-entropy materials are attracting considerable interest due to a combination of useful properties and promising applications, predicting their formation remains a hindrance for rational discovery of new systems. Experimental approaches are based on physical intuition and/or expensive trial and error strategies. Most computational methods rely on the availability of sufficient experimental data and computational power. Machine learning (ML) applied to materials science can accelerate development and reduce costs. In this study, we propose an ML method, leveraging thermodynamic and compositional attributes of a given material for predicting the synthesizability (i.e., entropy-forming ability) of disordered metal carbides. The relative importance of the thermodynamic and compositional features for the predictions are then explored. The approach’s suitability is demonstrated by comparing values calculated with density functional theory to ML predictions. Finally, the model is employed to predict the entropy-forming ability of 70 new compositions; several predictions are validated by additional density functional theory calculations and experimental synthesis, corroborating the effectiveness in exploring vast compositional spaces in a high-throughput manner. Importantly, seven compositions are selected specifically, because they contain all three of the Group VI elements (Cr, Mo, and W), which do not form room temperature-stable rock-salt monocarbides. Incorporating the Group VI elements into the rock-salt structure provides further opportunity for tuning the electronic structure and potentially material performance
High-entropy high-hardness metal carbides discovered by entropy descriptors
High-entropy materials have attracted considerable interest due to the
combination of useful properties and promising applications. Predicting their
formation remains the major hindrance to the discovery of new systems. Here we
propose a descriptor - entropy forming ability - for addressing
synthesizability from first principles. The formalism, based on the energy
distribution spectrum of randomized calculations, captures the accessibility of
equally-sampled states near the ground state and quantifies configurational
disorder capable of stabilizing high-entropy homogeneous phases. The
methodology is applied to disordered refractory 5-metal carbides - promising
candidates for high-hardness applications. The descriptor correctly predicts
the ease with which compositions can be experimentally synthesized as rock-salt
high-entropy homogeneous phases, validating the ansatz, and in some cases,
going beyond intuition. Several of these materials exhibit hardness up to 50%
higher than rule of mixtures estimations. The entropy descriptor method has the
potential to accelerate the search for high-entropy systems by rationally
combining first principles with experimental synthesis and characterization.Comment: 12 pages, 2 figure
A Bayesian approach to the follow-up of candidate gravitational wave signals
Ground-based gravitational wave laser interferometers (LIGO, GEO-600, Virgo
and Tama-300) have now reached high sensitivity and duty cycle. We present a
Bayesian evidence-based approach to the search for gravitational waves, in
particular aimed at the followup of candidate events generated by the analysis
pipeline. We introduce and demonstrate an efficient method to compute the
evidence and odds ratio between different models, and illustrate this approach
using the specific case of the gravitational wave signal generated during the
inspiral phase of binary systems, modelled at the leading quadrupole Newtonian
order, in synthetic noise. We show that the method is effective in detecting
signals at the detection threshold and it is robust against (some types of)
instrumental artefacts. The computational efficiency of this method makes it
scalable to the analysis of all the triggers generated by the analysis
pipelines to search for coalescing binaries in surveys with ground-based
interferometers, and to a whole variety of signal waveforms, characterised by a
larger number of parameters.Comment: 9 page
The Effect of the LISA Response Function on Observations of Monochromatic Sources
The Laser Interferometer Space Antenna (LISA) is expected to provide the
largest observational sample of binary systems of faint sub-solar mass compact
objects, in particular white-dwarfs, whose radiation is monochromatic over most
of the LISA observational window. Current astrophysical estimates suggest that
the instrument will be able to resolve about 10000 such systems, with a large
fraction of them at frequencies above 3 mHz, where the wavelength of
gravitational waves becomes comparable to or shorter than the LISA arm-length.
This affects the structure of the so-called LISA transfer function which cannot
be treated as constant in this frequency range: it introduces characteristic
phase and amplitude modulations that depend on the source location in the sky
and the emission frequency. Here we investigate the effect of the LISA transfer
function on detection and parameter estimation for monochromatic sources. For
signal detection we show that filters constructed by approximating the transfer
function as a constant (long wavelength approximation) introduce a negligible
loss of signal-to-noise ratio -- the fitting factor always exceeds 0.97 -- for
f below 10mHz, therefore in a frequency range where one would actually expect
the approximation to fail. For parameter estimation, we conclude that in the
range 3mHz to 30mHz the errors associated with parameter measurements differ
from about 5% up to a factor of 10 (depending on the actual source parameters
and emission frequency) with respect to those computed using the long
wavelength approximation.Comment: replacement version with typos correcte
Agro-biodiversity in Subsistence Farming Systems of South Somalia – Collection and Agronomic Assessment of Somali Sorghum (Sorghum bicolor (L.) Moench) Germplasm
The article gathers important information about sorghum to promote the conservation and future improvement of local sorghum landraces, thus aiding in the stabilisation of a secure and sustainable food resource for farmers of southern Somalia.Maqaalku wuxuu ka koobanyahay warar muhim ah oo ku saabsan masaggada xagga horumarinta kaydinteeda iyo tayadeeda, arrintaasoo wax weyn u tarayso beeralayda koofur Soomaaliya.L'articolo raccoglie importanti informazioni sul sorgo per promuovere la conservazione e il miglioramento delle varietà locali di sorgo, contribuendo così alla stabilizzazione di una risorsa alimentare sostenibile per gli agricoltori del sud della Somalia
Constant amplitude and post-overload fatigue crack growth behavior in PM aluminum alloy AA 8009
A recently developed, rapidly solidified, powder metallurgy, dispersion strengthened aluminum alloy, AA 8009, was fatigue tested at room temperature in lab air. Constant amplitude/constant delta kappa and single spike overload conditions were examined. High fatigue crack growth rates and low crack closure levels compared to typical ingot metallurgy aluminum alloys were observed. It was proposed that minimal crack roughness, crack path deflection, and limited slip reversibility, resulting from ultra-fine microstructure, were responsible for the relatively poor da/dN-delta kappa performance of AA 8009 as compared to that of typical IM aluminum alloys
- …
