242 research outputs found
Odour nuisance in Scheldt branch Gentbrugge-Melle [POSTER]
The tidal branch of the Sea Scheldt between the lock of Gentbrugge and Melle - part of the complex Ringvaart system around Ghent - has not received any upstream discharge since 1981. Consequently, ebb velocities were reduced, while flood velocities were left unaffected, causing sedimentation in the branch. At some locations along the branch, odour nuisance was regularly reported. In order to address the problem, Division Sea Scheldt of the Flemish Government proposed to dredge the associated muddy material. Flanders Hydraulics Research (FHR) was asked to conduct a study about the necessary upstream discharge at the lock of Gentbrugge needed to ensure the river branch’s self-erosiveness. To answer this question, monitored data were combined with modelling know-how. A 2D numerical morphological model was constructed, for which hydrological and sedimentological parameters, such as discharge, gauge height and sediment concentration, were used as input and for validation. All of these data were provided by FHR. After numerous numerical scenarios, it was concluded that the discharge required, lies between 20 and 25 m3/s. However, as a mean discharge of about 70 m3/s is discharged into the entire water system around Ghent, and as other waterways within this system require sufficient discharges (of which the Canal Ghent-Terneuzen has been determined in a Belgian-Dutch treaty) this discharge is not available in normal circumstances in the tidal branch. Currently, Flanders Hydraulics Research is investigating the possibilities of a lower discharge at the weir of Gentbrugge, that would allow to maintain the branch with a limited dredging
Modality, Potentiality and Contradiction in Quantum Mechanics
In [11], Newton da Costa together with the author of this paper argued in
favor of the possibility to consider quantum superpositions in terms of a
paraconsistent approach. We claimed that, even though most interpretations of
quantum mechanics (QM) attempt to escape contradictions, there are many hints
that indicate it could be worth while to engage in a research of this kind.
Recently, Arenhart and Krause [1, 2, 3] have raised several arguments against
this approach and claimed that, taking into account the square of opposition,
quantum superpositions are better understood in terms of contrariety
propositions rather than contradictory propositions. In [17] we defended the
Paraconsistent Approach to Quantum Superpositions (PAQS) and provided arguments
in favor of its development. In the present paper we attempt to analyze the
meanings of modality, potentiality and contradiction in QM, and provide further
arguments of why the PAQS is better suited, than the Contrariety Approach to
Quantum Superpositions (CAQS) proposed by Arenhart and Krause, to face the
interpretational questions that quantum technology is forcing us to consider.Comment: Published in: New Directions in Paraconsistent Logic, J-Y B\'eziau M.
Chakraborty & S. Dutta (Eds.), Springer, in press. arXiv admin note: text
overlap with arXiv:1404.518
Heat Treated NiP–SiC Composite Coatings: Elaboration and Tribocorrosion Behaviour in NaCl Solution
Tribocorrosion behaviour of heat-treated NiP and NiP–SiC composite coatings was investigated in a 0.6 M NaCl solution. The tribocorrosion tests were performed in a linear sliding tribometer with an electrochemical cell interface. It was analyzed the influence of SiC particles dispersion in the NiP matrix on current density developed, on coefficient of friction and on wear volume loss. The results showed that NiP–SiC composite coatings had a lower wear volume loss compared to NiP coatings. However, the incorporation of SiC particles into the metallic matrix affects the current density developed by the system during the tribocorrosion test. It was verified that not only the volume of co-deposited particles (SiC vol.%) but also the number of SiC particles per coating area unit (and consequently the SiC particles size) have made influence on the tribocorrosion behaviour of NiP–SiC composite coatings
Practical implementation, characterization and applications of a multi-colour time-gated luminescence microscope
Time-gated luminescence microscopy using long-lifetime molecular probes can effectively eliminate autofluorescence to enable high contrast imaging. Here we investigate a new strategy of time-gated imaging for simultaneous visualisation of multiple species of microorganisms stained with long-lived complexes under low-background conditions. This is realized by imaging two pathogenic organisms (Giardia lamblia stained with a red europium probe and Cryptosporidium parvum with a green terbium probe) at UV wavelengths (320-400 nm) through synchronization of a flash lamp with high repetition rate (1 kHz) to a robust time-gating detection unit. This approach provides four times enhancement in signal-to-background ratio over non-time-gated imaging, while the average signal intensity also increases six-fold compared with that under UV LED excitation. The high sensitivity is further confirmed by imaging the single europium-doped Y2O2S nanocrystals (150 nm). We report technical details regarding the time-gating detection unit and demonstrate its compatibility with commercial epi-fluorescence microscopes, providing a valuable and convenient addition to standard laboratory equipment
Magnetic and thermal properties of 4f-3d ladder-type molecular compounds
We report on the low-temperature magnetic susceptibilities and specific heats
of the isostructural spin-ladder molecular complexes L[M(opba)]_{3\cdot
xDMSOHO, hereafter abbreviated with LM (where L =
La, Gd, Tb, Dy, Ho and M = Cu, Zn). The results show that the Cu containing
complexes (with the exception of LaCu) undergo long range magnetic
order at temperatures below 2 K, and that for GdCu this ordering is
ferromagnetic, whereas for TbCu and DyCu it is probably
antiferromagnetic. The susceptibilities and specific heats of TbCu
and DyCu above have been explained by means of a model
taking into account nearest as well as next-nearest neighbor magnetic
interactions. We show that the intraladder L--Cu interaction is the predominant
one and that it is ferromagnetic for L = Gd, Tb and Dy. For the cases of Tb, Dy
and Ho containing complexes, strong crystal field effects on the magnetic and
thermal properties have to be taken into account. The magnetic coupling between
the (ferromagnetic) ladders is found to be very weak and is probably of dipolar
origin.Comment: 13 pages, 15 figures, submitted to Phys. Rev.
Archeologisch onderzoek op een urnenveld uit de late bronstijd en vroege ijzertijd te Kontich - Duffelsesteenweg 21 - 35
Dit rapport werd ingediend bij het agentschap samen met een aantal afzonderlijke digitale bijlagen. Een aantal van deze bijlagen zijn niet inbegrepen in dit pdf document en zijn niet online beschikbaar. Sommige bijlagen (grondplannen, fotos, spoorbeschrijvingen, enz.) kunnen van belang zijn voor een betere lezing en interpretatie van dit rapport. Indien u deze bijlagen wenst te raadplegen kan u daarvoor contact opnemen met: [email protected]
Dihydrolipoic acid reduces cytochrome b561 proteins.
Cytochrome b561 (Cyt-b561) proteins constitute a family of trans-membrane proteins that are present in a wide variety of organisms. Two of their characteristic properties are the reducibility by ascorbate (ASC) and the presence of two distinct b-type hemes localized on two opposite sides of the membrane. Here we show that the tonoplast-localized and the putative tumor suppressor Cyt-b561 proteins can be reduced by other reductants than ASC and dithionite. A detailed spectral analysis of the ASC-dependent and dihydrolipoic acid (DHLA)-dependent reduction of these two Cyt-b561 proteins is also presented. Our results are discussed in relation to the known antioxidant capability of DHLA as well as its role in the regeneration of other antioxidant compounds of cells. These results allow us to speculate on new biological functions for the trans-membrane Cyt-b561 proteins
- …
