1,900 research outputs found
Magnetic cycles at different ages of stars
We study the different patterns of interannual magnetic variability in stars
on or near the lower main sequence, approximately solar-type (G-K dwarf) stars
in time series of 36 years from the Mount Wilson Observatory Ca\,{\sc ii}\,H\&K
survey. Our main aim is to search for correlations between cycles, activity
measures and ages. Time-frequency analysis has been used to discern and reveal
patterns and morphology of stellar activity cycles, including multiple and
changing cycles, in the datasets. Both the results from short-term Fourier
transform and its refinement using the Choi-Williams distribution, with better
frequency resolution, are presented in this study. Rotational periods of the
stars were derived using multi-frequency Fourier analysis.From the studied 29
stars we found at least one activity cycle on 28 of them. Twelve stars, with
longer rotational periods ( days) have simple, smooth cycles, and
the rest of the stars, with on-average much faster rotation (
days) show complex and sometimes vigorously changing, multiple cycles. The
cycles are longer and quite uniform in the first group ( years),
while are generally shorter and with greater variety in the second one
(). There is a clear age division between stars with smooth and
complex cycles that follows the known separation between the older and younger
stars at around 2 to 3~Gyr of age.Comment: Accepted to Astronomy and Astrophysic
Empty pentagons in point sets with collinearities
An empty pentagon in a point set P in the plane is a set of five points in P
in strictly convex position with no other point of P in their convex hull. We
prove that every finite set of at least 328k^2 points in the plane contains an
empty pentagon or k collinear points. This is optimal up to a constant factor
since the (k-1)x(k-1) grid contains no empty pentagon and no k collinear
points. The previous best known bound was doubly exponential.Comment: 15 pages, 11 figure
M-Dwarf Fast Rotators and the Detection of Relatively Young Multiple M-Star Systems
We have searched the Kepler light curves of ~3900 M-star targets for evidence
of periodicities that indicate, by means of the effects of starspots, rapid
stellar rotation. Several analysis techniques, including Fourier transforms,
inspection of folded light curves, 'sonograms', and phase tracking of
individual modulation cycles, were applied in order to distinguish the
periodicities due to rapid rotation from those due to stellar pulsations,
eclipsing binaries, or transiting planets. We find 178 Kepler M-star targets
with rotation periods, P_rot, of < 2 days, and 110 with P_rot < 1 day. Some 30
of the 178 systems exhibit two or more independent short periods within the
same Kepler photometric aperture, while several have three or more short
periods. Adaptive optics imaging and modeling of the Kepler pixel response
function for a subset of our sample support the conclusion that the targets
with multiple periods are highly likely to be relatively young physical binary,
triple, and even quadruple M star systems. We explore in detail the one object
with four incommensurate periods all less than 1.2 days, and show that two of
the periods arise from one of a close pair of stars, while the other two arise
from the second star, which itself is probably a visual binary. If most of
these M-star systems with multiple periods turn out to be bound M stars, this
could prove a valuable way of discovering young hierarchical M-star systems;
the same approach may also be applicable to G and K stars. The ~5% occurrence
rate of rapid rotation among the ~3900 M star targets is consistent with spin
evolution models that include an initial contraction phase followed by magnetic
braking, wherein a typical M star can spend several hundred Myr before spinning
down to periods longer than 2 days.Comment: 17 pages, 12 figures, 2 tables; accepted for publication in The
Astrophysical Journa
An Improved Bound for First-Fit on Posets Without Two Long Incomparable Chains
It is known that the First-Fit algorithm for partitioning a poset P into
chains uses relatively few chains when P does not have two incomparable chains
each of size k. In particular, if P has width w then Bosek, Krawczyk, and
Szczypka (SIAM J. Discrete Math., 23(4):1992--1999, 2010) proved an upper bound
of ckw^{2} on the number of chains used by First-Fit for some constant c, while
Joret and Milans (Order, 28(3):455--464, 2011) gave one of ck^{2}w. In this
paper we prove an upper bound of the form ckw. This is best possible up to the
value of c.Comment: v3: referees' comments incorporate
Morphological evidence for enhanced kisspeptin and neurokinin B signaling in the infundibular nucleus of the aging man.
Peptidergic neurons synthesizing kisspeptin (KP) and neurokinin B (NKB) in the hypothalamic infundibular nucleus have been implicated in negative sex steroid feedback to GnRH neurons. In laboratory rodents, testosterone decreases KP and NKB expression in this region. In the present study, we addressed the hypothesis that the weakening of this inhibitory testosterone feedback in elderly men coincides with enhanced KP and NKB signaling in the infundibular nucleus. This central hypothesis was tested in a series of immunohistochemical studies on hypothalamic sections of male human individuals that were divided into arbitrary "young" (21-49 yr, n = 11) and "aged" (50-67 yr, n = 9) groups. Quantitative immunohistochemical experiments established that the regional densities of NKB-immunoreactive (IR) perikarya and fibers, and the incidence of afferent contacts they formed onto GnRH neurons, exceeded several times those of the KP-IR elements. Robust aging-dependent enhancements were identified in the regional densities of KP-IR perikarya and fibers and the incidence of afferent contacts they established onto GnRH neurons. The abundance of NKB-IR perikarya, fibers, and axonal appositions to GnRH neurons also increased with age, albeit to lower extents. In dual-immunofluorescent studies, the incidence of KP-IR NKB perikarya increased from 36% in young to 68% in aged men. Collectively, these immunohistochemical data suggest an aging-related robust enhancement in central KP signaling and a moderate enhancement in central NKB signaling. These changes are compatible with a reduced testosterone negative feedback to KP and NKB neurons. The heavier KP and NKB inputs to GnRH neurons in aged, compared with young, men may play a role in the enhanced central stimulation of the reproductive axis. It requires clarification to what extent the enhanced KP and NKB signaling upstream from GnRH neurons is an adaptive response to hypogonadism or, alternatively, a consequence of a decline in the androgen sensitivity of KP and NKB neurons
Ocorrência e intensidade de antracnose em viveiros de mudas e cultivos comerciais de pupunheira do Paraná e Santa Catarina.
bitstream/item/68273/1/CT-306.pd
Doenças foliares da pupunheira (Bactris gasipaes) no Estado do Paraná.
Visando fornecer subsidios para futuras acoes de pesquisa, este trabalho tem o objetivo de apresentar informacoes sobre a situacao fitossanitaria da cultura da pupunha no Estado do Parana. Foi constatada a ocorrencia de antracnose, causada por Colletotrichum gloesporioides, em oito plantios e dois viveiros amostrados nos municipios de Morretes, Paranagua, Sao Tome e Paranavai, Estado do Parana. A ocorrencia de antracnose foi mais severa em mudas em formacao em viveiros e tambem nos plantios com ate 6 a 8 meses. Foram constatadas as presencas de Fusarium sp. e Cladosporium sp., causando queima das folhas, em plantas jovens.Notas tecnicas
The Konkoly Blazhko Survey: Is light-curve modulation a common property of RRab stars?
A systematic survey to establish the true incidence rate of the Blazhko
modulation among short-period, fundamental-mode, Galactic field RR Lyrae stars
has been accomplished. The Konkoly Blazhko Survey (KBS) was initiated in 2004.
Since then more than 750 nights of observation have been devoted to this
project. A sample of 30 RRab stars was extensively observed, and light-curve
modulation was detected in 14 cases. The 47% occurrence rate of the modulation
is much larger than any previous estimate. The significant increase of the
detected incidence rate is mostly due to the discovery of small-amplitude
modulation. Half of the Blazhko variables in our sample show modulation with so
small amplitude that definitely have been missed in the previous surveys. We
have found that the modulation can be very unstable in some cases, e.g. RY Com
showed regular modulation only during one part of the observations while during
two seasons it had stable light curve with abrupt, small changes in the
pulsation amplitude. This type of light-curve variability is also hard to
detect in other Survey's data. The larger frequency of the light-curve
modulation of RRab stars makes it even more important to find the still lacking
explanation of the Blazhko phenomenon. The validity of the [Fe/H](P,phi_{31})
relation using the mean light curves of Blazhko variables is checked in our
sample. We have found that the formula gives accurate result for
small-modulation-amplitude Blazhko stars, and this is also the case for
large-modulation-amplitude stars if the light curve has complete phase
coverage. However, if the data of large-modulation-amplitude Blazhko stars are
not extended enough (e.g. < 500 data points from < 15 nights), the formula may
give false result due to the distorted shape of the mean light curve used.Comment: Accepted for publication in MNRAS, 14 pages, 7 Figure
Upward Three-Dimensional Grid Drawings of Graphs
A \emph{three-dimensional grid drawing} of a graph is a placement of the
vertices at distinct points with integer coordinates, such that the straight
line segments representing the edges do not cross. Our aim is to produce
three-dimensional grid drawings with small bounding box volume. We prove that
every -vertex graph with bounded degeneracy has a three-dimensional grid
drawing with volume. This is the broadest class of graphs admiting
such drawings. A three-dimensional grid drawing of a directed graph is
\emph{upward} if every arc points up in the z-direction. We prove that every
directed acyclic graph has an upward three-dimensional grid drawing with
volume, which is tight for the complete dag. The previous best upper
bound was . Our main result is that every -colourable directed
acyclic graph ( constant) has an upward three-dimensional grid drawing with
volume. This result matches the bound in the undirected case, and
improves the best known bound from for many classes of directed
acyclic graphs, including planar, series parallel, and outerplanar
- …
