784 research outputs found
Tumour necrosis factor alpha, interferon gamma and substance P are novel modulators of extrapituitary prolactin expression in human skin.
Human scalp skin and hair follicles (HFs) are extra-pituitary sources of prolactin (PRL). However, the intracutaneous regulation of PRL remains poorly understood. Therefore we investigated whether well-recognized regulators of pituitary PRL expression, which also impact on human skin physiology and pathology, regulate expression of PRL and its receptor (PRLR) in situ. This was studied in serum-free organ cultures of microdissected human scalp HFs and skin, i.e. excluding pituitary, neural and vascular inputs. Prolactin expression was confirmed at the gene and protein level in human truncal skin, where its expression significantly increased (p = 0.049) during organ culture. There was, however, no evidence of PRL secretion into the culture medium as measured by ELISA. PRL immunoreactivity (IR) in female human epidermis was decreased by substance P (p = 0.009), while neither the classical pituitary PRL inhibitor, dopamine, nor corticotropin-releasing hormone significantly modulated PRL IR in HFs or skin respectively. Interferon (IFN) gamma increased PRL IR in the epithelium of human HFs (p = 0.044) while tumour necrosis factor (TNF) alpha decreased both PRL and PRLR IR. This study identifies substance P, TNFalpha and IFNgamma as novel modulators of PRL and PRLR expression in human skin, and suggests that intracutaneous PRL expression is not under dopaminergic control. Given the importance of PRL in human hair growth regulation and its possible role in the pathogenesis of several common skin diseases, targeting intracutaneous PRL production via these newly identified regulatory pathways may point towards novel therapeutic options for inflammatory dermatoses
Formation of molecular hydrogen on analogues of interstellar dust grains: experiments and modelling
Molecular hydrogen has an important role in the early stages of star
formation as well as in the production of many other molecules that have been
detected in the interstellar medium. In this review we show that it is now
possible to study the formation of molecular hydrogen in simulated
astrophysical environments. Since the formation of molecular hydrogen is
believed to take place on dust grains, we show that surface science techniques
such as thermal desorption and time-of-flight can be used to measure the
recombination efficiency, the kinetics of reaction and the dynamics of
desorption. The analysis of the experimental results using rate equations gives
useful insight on the mechanisms of reaction and yields values of parameters
that are used in theoretical models of interstellar cloud chemistry.Comment: 23 pages, 7 figs. Published in the J. Phys.: Conf. Se
COMPETING MECHANISMS OF MOLECULAR HYDROGEN FORMATION IN CONDITIONS RELEVANT TO THE INTERSTELLAR MEDIUM
International audienceThe most efficient mechanism of the formation of molecular hydrogen in the current universe is by association of hydrogen atoms on the surface of interstellar dust grains. The details of the processes of its formation and release from the grain are of great importance in the physical and chemical evolution of the space environmentswhere it takes place. Themain puzzle is still the fate of the 4.5 eV released in H2 formation and whether it goes into internal energy (rovibrational excitation), translational kinetic energy, or heating of the grain. The modality of the release of this energy affects the dynamics of the ISM and its evolution toward star formation.We present results of the detection of the rovibrational states of the just-formed H2 as it leaves the surface of a silicate.We find that rovibrationally excited molecules are ejected into the gas phase immediately after formation over a much wider range of grain temperatures than anticipated. Our results can be explained by the presence of twomechanisms ofmolecule formation that operate in partially overlapping ranges of grain temperature. A preliminary analysis of the relative importance of these two mechanisms is given. These unexpected findings, which will be complemented with experiments on the influence of factors such as silicate morphology, should be of great interest to the astrophysics and astrochemistry communities
High-precision prompt-γ-ray spectral data from the reaction Pu 241 (nth, f)
In this paper we present results from the first high-precision prompt-γ-ray spectral measurements from the reaction Pu241(nth, f). Apart from one recent experiment, no data are reported in the literature for this fissioning system, which motivated a new dedicated experiment. We have measured prompt-fission γ rays with three cerium-doped LaBr3 (two 5.08cm×5.08 cm and one 7.62cm×7.62 cm) and one CeBr3 (5.08cm×5.08 cm) scintillation detectors, which all exhibit excellent timing and good energy resolution. The average γ-ray multiplicity was determined to be ν̄γ=(8.21±0.09) per fission, the average energy to be εγ=(0.78±0.01) MeV, and the total energy to be Eγ,tot=(6.41±0.06) MeV as the weighted average from all detectors. Since the results from all detectors are in excellent agreement, and the total released γ energy is modestly higher than the one in the present evaluated nuclear data files, we suspect that the underestimation of the prompt-γ heating in nuclear reactors is due to fast-neutron-induced fission on U238 or rather from fission induced by γ rays from neutron capture in the construction material.European Commision NeutAndalus FP7-PEOPLE-2012-CIGPrograma ERINDA 26949
Buffer gas cooling and trapping of atoms with small magnetic moments
Buffer gas cooling was extended to trap atoms with small magnetic moment
(mu). For mu greater than or equal to 3mu_B, 1e12 atoms were buffer gas cooled,
trapped, and thermally isolated in ultra high vacuum with roughly unit
efficiency. For mu < 3mu_B, the fraction of atoms remaining after full thermal
isolation was limited by two processes: wind from the rapid removal of the
buffer gas and desorbing helium films. In our current apparatus we trap atoms
with mu greater than or equal to 1.1mu_B, and thermally isolate atoms with mu
greater than or equal to 2mu_B. Extrapolation of our results combined with
simulations of the loss processes indicate that it is possible to trap and
evaporatively cool mu = 1mu_B atoms using buffer gas cooling.Comment: 17 pages, 4 figure
Scaling of Island Growth in Pb Overlayers on Cu(001)
The growth and ordering of a Pb layer deposited on Cu(001) at 150 K has been
studied using atom beam scattering. At low coverage, ordered Pb islands with a
large square unit cell and nearly hexagonal internal structure are formed. This
is a high order commensurate phase with 30 atoms in the unit cell. From the
measurement of the island diffraction peak profiles we find a power law for the
mean island - size versus coverage with an exponent . A
scaling behavior of growth is confirmed and a simple model describing island
growth is presented. Due to the high degeneracy of the monolayer phase,
different islands do not diffract coherently. Therefore, when islands merge
they still diffract as separate islands and coalescence effects are thus
negligible. From the result for we conclude that the island density is
approximately a constant in the coverage range where the
ordered islands are observed. We thus conclude that most islands nucleate at
and then grow in an approximately self similar fashion as
increases.Comment: 23 pages, 10 Figures (available upon request). SU-PHYS-93-443-375
Simple Model of Capillary Condensation in porous media
We employ a simple model to describe the phase behavior of 4He and Ar in a
hypothetical porous material consisting of a regular array of infinitely long,
solid, parallel cylinders. We find that high porosity geometries exhibit two
transitions: from vapor to film and from film to capillary condensed liquid. At
low porosity, the film is replaced by a ``necking'' configuration, and for a
range of intermediate porosity there are three transitions: from vapor to film,
from film to necking and from necking to a capillary condensed phase.Comment: 14 pages, 7 figure
Bose-Einstein Condensation of Helium and Hydrogen inside Bundles of Carbon Nanotubes
Helium atoms or hydrogen molecules are believed to be strongly bound within
the interstitial channels (between three carbon nanotubes) within a bundle of
many nanotubes. The effects on adsorption of a nonuniform distribution of tubes
are evaluated. The energy of a single particle state is the sum of a discrete
transverse energy Et (that depends on the radii of neighboring tubes) and a
quasicontinuous energy Ez of relatively free motion parallel to the axis of the
tubes. At low temperature, the particles occupy the lowest energy states, the
focus of this study. The transverse energy attains a global minimum value
(Et=Emin) for radii near Rmin=9.95 Ang. for H2 and 8.48 Ang.for He-4. The
density of states N(E) near the lowest energy is found to vary linearly above
this threshold value, i.e. N(E) is proportional to (E-Emin). As a result, there
occurs a Bose-Einstein condensation of the molecules into the channel with the
lowest transverse energy. The transition is characterized approximately as that
of a four dimensional gas, neglecting the interactions between the adsorbed
particles. The phenomenon is observable, in principle, from a singular heat
capacity. The existence of this transition depends on the sample having a
relatively broad distribution of radii values that include some near Rmin.Comment: 21 pages, 9 figure
Theory of decoherence in a matter wave Talbot-Lau interferometer
We present a theoretical framework to describe the effects of decoherence on
matter waves in Talbot-Lau interferometry. Using a Wigner description of the
stationary beam the loss of interference contrast can be calculated in closed
form. The formulation includes both the decohering coupling to the environment
and the coherent interaction with the grating walls. It facilitates the
quantitative distinction of genuine quantum interference from the expectations
of classical mechanics. We provide realistic microscopic descriptions of the
experimentally relevant interactions in terms of the bulk properties of the
particles and show that the treatment is equivalent to solving the
corresponding master equation in paraxial approximation.Comment: 20 pages, 4 figures (minor corrections; now in two-column format
Net Charge on a Noble Gas Atom Adsorbed on a Metallic Surface
Adsorbed noble gas atoms donate (on the average) a fraction of an electronic
charge to the substrate metal. The effect has been experimentally observed as
an adsorptive change in the electronic work function. The connection between
the effective net atomic charge and the binding energy of the atom to the metal
is theoretically explored.Comment: ReVvTeX 3.1 format, Two Figures, Three Table
- …
