1,547 research outputs found
Star formation activity in the southern Galactic HII region G351.63-1.25
The southern Galactic high mass star-forming region, G351.6-1.3, is a HII
region-molecular cloud complex with a luminosity of 2.0 x 10^5 L_sun, located
at a distance of 2.4 kpc. In this paper, we focus on the investigation of the
associated HII region, embedded cluster and the interstellar medium in the
vicinity of G351.6-1.3. We address the identification of exciting source(s) as
well as the census of stellar populations. The ionised gas distribution has
been mapped using the Giant Metrewave Radio Telescope (GMRT), India at three
continuum frequencies: 1280, 610 and 325 MHz. The HII region shows an elongated
morphology and the 1280 MHz map comprises six resolved high density regions
encompassed by diffuse emission spanning 1.4 pc x 1.0 pc. The zero age
main-sequence (ZAMS) spectral type of the brightest radio core is O7.5. We have
carried out near-infrared observations in the JHKs bands using the SIRIUS
instrument on the 1.4 m Infrared Survey Facility (IRSF) telescope. The
near-infrared images reveal the presence of a cluster embedded in nebulous
fan-shaped emission. The log-normal slope of the K-band luminosity function of
the embedded cluster is found to be 0.27 +- 0.03 and the fraction of the
near-infrared excess stars is estimated to be 43%. These indicate that the age
of the cluster is consistent with 1 Myr. The champagne flow model from a flat,
thin molecular cloud is used to explain the morphology of radio emission with
respect to the millimetre cloud and infrared brightness.Comment: 18 pages, 8 figures, To be published in MNRA
Probing the massive star forming environment - a multiwavelength investigation of the filamentary IRDC G333.73+0.37
We present a multiwavelength study of the filamentary infrared dark cloud
(IRDC) G333.73+0.37. The region contains two distinct mid-infrared sources S1
and S2 connected by dark lanes of gas and dust. Cold dust emission from the
IRDC is detected at seven wavelength bands and we have identified 10 high
density clumps in the region. The physical properties of the clumps such as
temperature: 14.3-22.3 K and mass: 87-1530 M_sun are determined by fitting a
modified blackbody to the spectral energy distribution of each clump between
160 micron and 1.2 mm. The total mass of the IRDC is estimated to be $~4700
M_sun. The molecular line emission towards S1 reveals signatures of
protostellar activity. Low frequency radio emission at 1300 and 610 MHz is
detected towards S1 (shell-like) and S2 (compact morphology), confirming the
presence of newly formed massive stars in the IRDC. Photometric analysis of
near and mid-infrared point sources unveil the young stellar object population
associated with the cloud. Fragmentation analysis indicates that the filament
is supercritical. We observe a velocity gradient along the filament, that is
likely to be associated with accretion flows within the filament rather than
rotation. Based on various age estimates obtained for objects in different
evolutionary stages, we attempt to set a limit to the current age of this
cloud.Comment: 26 pages, 20 figures, accepted by Ap
Radio and infrared study of the star forming region IRAS 20286+4105
A multi-wavelength investigation of the star forming complex IRAS 20286+4105,
located in the Cygnus-X region, is presented here. Near-infrared K-band data is
used to revisit the cluster / stellar group identified in previous studies. The
radio continuum observations, at 610 and 1280 MHz show the presence of a HII
region possibly powered by a star of spectral type B0 - B0.5. The cometary
morphology of the ionized region is explained by invoking the bow-shock model
where the likely association with a nearby supernova remnant is also explored.
A compact radio knot with non-thermal spectral index is detected towards the
centre of the cloud. Mid-infrared data from the Spitzer Legacy Survey of the
Cygnus-X region show the presence of six Class I YSOs inside the cloud. Thermal
dust emission in this complex is modelled using Herschel far-infrared data to
generate dust temperature and column density maps. Herschel images also show
the presence of two clumps in this region, the masses of which are estimated to
be {\sim} 175 M{\sun} and 30 M{\sun}. The mass-radius relation and the surface
density of the clumps do not qualify them as massive star forming sites. An
overall picture of a runaway star ionizing the cloud and a triggered population
of intermediate-mass, Class I sources located toward the cloud centre emerges
from this multiwavelength study. Variation in the dust emissivity spectral
index is shown to exist in this region and is seen to have an inverse relation
with the dust temperature.Comment: 20 pages, 16 figures, accepted for publication in MNRA
An audit cycle to improve an emergency surgery ambulatory clinic
Marés Deulovol, Frederic; Florensa Ferrer, Adolf;Vilaseca, JosepPla mig de l'escultura de bonze situada
a la part inferior de l'Obelisc a Pi i Margall. Mesura
4,19 x 1,21 x 0,70 metres i és de escultura de bronze,
obelisc aplacat de granit gris
A necklace of dense cores in the high-mass star forming region G35.20-0.74N: ALMA observations
The present study aims at characterizing the massive star forming region
G35.20N, which is found associated with at least one massive outflow and
contains multiple dense cores, one of them recently found associated with a
Keplerian rotating disk. We used ALMA to observe the G35.20N region in the
continuum and line emission at 350 GHz. The observed frequency range covers
tracers of dense gas (e.g. H13CO+, C17O), molecular outflows (e.g. SiO), and
hot cores (e.g. CH3CN, CH3OH). The ALMA 870 um continuum emission map reveals
an elongated dust structure (0.15 pc long and 0.013 pc wide) perpendicular to
the large-scale molecular outflow detected in the region, and fragmented into a
number of cores with masses 1-10 Msun and sizes 1600 AU. The cores appear
regularly spaced with a separation of 0.023 pc. The emission of dense gas
tracers such as H13CO+ or C17O is extended and coincident with the dust
elongated structure. The three strongest dust cores show emission of complex
organic molecules characteristic of hot cores, with temperatures around 200 K,
and relative abundances 0.2-2x10^(-8) for CH3CN and 0.6-5x10^(-6) for CH3OH.
The two cores with highest mass (cores A and B) show coherent velocity fields,
with gradients almost aligned with the dust elongated structure. Those velocity
gradients are consistent with Keplerian disks rotating about central masses of
4-18 Msun. Perpendicular to the velocity gradients we have identified a
large-scale precessing jet/outflow associated with core B, and hints of an
east-west jet/outflow associated with core A. The elongated dust structure in
G35.20N is fragmented into a number of dense cores that may form massive stars.
Based on the velocity field of the dense gas, the orientation of the magnetic
field, and the regularly spaced fragmentation, we interpret this elongated
structure as the densest part of a 1D filament fragmenting and forming massive
stars.Comment: 24 pages, 26 figures, accepted for publication in Astronomy and
Astrophysics (abstract modified to fit arXiv restrictions
- …
