1,408 research outputs found

    The management of de-cumulation risks in a defined contribution environment

    Get PDF
    The aim of the paper is to lay the theoretical foundations for the construction of a flexible tool that can be used by pensioners to find optimal investment and consumption choices in the distribution phase of a defined contribution pension scheme. The investment/consumption plan is adopted until the time of compulsory annuitization, taking into account the possibility of earlier death. The effect of the bequest motive and the desire to buy a higher annuity than the one purchasable at retirement are included in the objective function. The mathematical tools provided by dynamic programming techniques are applied to find closed form solutions: numer-ical examples are also presented. In the model, the trade-off between the different desires of the individual regarding consumption and final annuity can be dealt with by choosing appropriate weights for these factors in the setting of the problem. Conclusions are twofold. Firstly, we find that there is a natural time-varying target for the size of the fund, which acts as a sort of safety level for the needs of the pensioner. Secondly, the personal preferences of the pensioner can be translated into optimal choices, which in turn affect the distribution of the consumption path and of the final annuity

    Classification of cryptocurrency coins and tokens by the dynamics of their market capitalisations

    Full text link
    We empirically verify that the market capitalisations of coins and tokens in the cryptocurrency universe follow power-law distributions with significantly different values, with the tail exponent falling between 0.5 and 0.7 for coins, and between 1.0 and 1.3 for tokens. We provide a rationale for this, based on a simple proportional growth with birth & death model previously employed to describe the size distribution of firms, cities, webpages, etc. We empirically validate the model and its main predictions, in terms of proportional growth (Gibrat's law) of the coins and tokens. Estimating the main parameters of the model, the theoretical predictions for the power-law exponents of coin and token distributions are in remarkable agreement with the empirical estimations, given the simplicity of the model. Our results clearly characterize coins as being "entrenched incumbents" and tokens as an "explosive immature ecosystem", largely due to massive and exuberant Initial Coin Offering activity in the token space. The theory predicts that the exponent for tokens should converge to 1 in the future, reflecting a more reasonable rate of new entrants associated with genuine technological innovations

    From Theory to Practice: Plug and Play with Succinct Data Structures

    Full text link
    Engineering efficient implementations of compact and succinct structures is a time-consuming and challenging task, since there is no standard library of easy-to- use, highly optimized, and composable components. One consequence is that measuring the practical impact of new theoretical proposals is a difficult task, since older base- line implementations may not rely on the same basic components, and reimplementing from scratch can be very time-consuming. In this paper we present a framework for experimentation with succinct data structures, providing a large set of configurable components, together with tests, benchmarks, and tools to analyze resource requirements. We demonstrate the functionality of the framework by recomposing succinct solutions for document retrieval.Comment: 10 pages, 4 figures, 3 table

    STROOPWAFEL: Simulating rare outcomes from astrophysical populations, with application to gravitational-wave sources

    Get PDF
    Gravitational-wave observations of double compact object (DCO) mergers are providing new insights into the physics of massive stars and the evolution of binary systems. Making the most of expected near-future observations for understanding stellar physics will rely on comparisons with binary population synthesis models. However, the vast majority of simulated binaries never produce DCOs, which makes calculating such populations computationally inefficient. We present an importance sampling algorithm, STROOPWAFEL, that improves the computational efficiency of population studies of rare events, by focusing the simulation around regions of the initial parameter space found to produce outputs of interest. We implement the algorithm in the binary population synthesis code COMPAS, and compare the efficiency of our implementation to the standard method of Monte Carlo sampling from the birth probability distributions. STROOPWAFEL finds \sim25-200 times more DCO mergers than the standard sampling method with the same simulation size, and so speeds up simulations by up to two orders of magnitude. Finding more DCO mergers automatically maps the parameter space with far higher resolution than when using the traditional sampling. This increase in efficiency also leads to a decrease of a factor \sim3-10 in statistical sampling uncertainty for the predictions from the simulations. This is particularly notable for the distribution functions of observable quantities such as the black hole and neutron star chirp mass distribution, including in the tails of the distribution functions where predictions using standard sampling can be dominated by sampling noise.Comment: Accepted. Data and scripts to reproduce main results is publicly available. The code for the STROOPWAFEL algorithm will be made publicly available. Early inquiries can be addressed to the lead autho

    Alternating Control Flow Reconstruction

    Get PDF

    Drops for stuff: An analysis of reshipping mule scams

    Get PDF
    Credit card fraud has seen rampant increase in the past years, as customers use credit cards and similar financial instruments frequently. Both online and brick-and-mortar outfits repeatedly fall victim to cybercriminals who siphon off credit card information in bulk. Despite the many and creative ways that attackers use to steal and trade credit card information, the stolen information can rarely be used to withdraw money directly, due to protection mechanisms such as PINs and cash advance limits. As such, cybercriminals have had to devise more advanced monetization schemes towork around the current restrictions. One monetization scheme that has been steadily gaining traction are reshipping scams. In such scams, cybercriminals purchase high-value or highly-demanded products from online merchants using stolen payment instruments, and then ship the items to a credulous citizen. This person, who has been recruited by the scammer under the guise of "work-from-home" opportunities, then forwards the received products to the cybercriminals, most of whom are located overseas. Once the goods reach the cybercriminals, they are then resold on the black market for an illicit profit. Due to the intricacies of this kind of scam, it is exceedingly difficult to trace, stop, and return shipments, which is why reshipping scams have become a common means for miscreants to turn stolen credit cards into cash. In this paper, we report on the first large-scale analysis of reshipping scams, based on information that we obtained from multiple reshipping scam websites. We provide insights into the underground economy behind reshipping scams, such as the relationships among the various actors involved, the market size of this kind of scam, and the associated operational churn. We find that there exist prolific reshipping scam operations, with one having shipped nearly 6,000 packages in just 9 months of operation, exceeding 7.3 million US dollars in yearly revenue, contributing to an overall reshipping scam revenue of an estimated 1.8 billion US dollars per year. Finally, we propose possible approaches to intervene and disrupt reshipping scam services

    Evolutionary dynamics of the cryptocurrency market

    Get PDF
    The cryptocurrency market surpassed the barrier of $100 billion market capitalization in June 2017, after months of steady growth. Despite its increasing relevance in the financial world, a comprehensive analysis of the whole system is still lacking, as most studies have focused exclusively on the behaviour of one (Bitcoin) or few cryptocurrencies. Here, we consider the history of the entire market and analyse the behaviour of 1469 cryptocurrencies introduced between April 2013 and May 2017. We reveal that, while new cryptocurrencies appear and disappear continuously and their market capitalization is increasing (super-)exponentially, several statistical properties of the market have been stable for years. These include the number of active cryptocurrencies, market share distribution and the turnover of cryptocurrencies. Adopting an ecological perspective, we show that the so-called neutral model of evolution is able to reproduce a number of key empirical observations, despite its simplicity and the assumption of no selective advantage of one cryptocurrency over another. Our results shed light on the properties of the cryptocurrency market and establish a first formal link between ecological modelling and the study of this growing system. We anticipate they will spark further research in this direction
    corecore