2,240 research outputs found
Intrinsic spin Hall effect in platinum metal
Spin Hall effect in metallic Pt is studied with first-principles relativistic
band calculations. It is found that intrinsic spin Hall conductivity (SHC) is
as large as at low temperature, and
decreases down to at room
temperature. It is due to the resonant contribution from the spin-orbit
splitting of the doubly degenerated -bands at high-symmetry and
points near the Fermi level. By modeling these near degeneracies by effective
Hamiltonian, we show that SHC has a peak near the Fermi energy and that the
vertex correction due to impurity scattering vanishes. We therefore argue that
the large spin Hall effect observed experimentally in platinum is of intrinsic
nature.Comment: Accepted for publication in Phys. Rev. Let
Surface state scattering by adatoms on noble metals
When surface state electrons scatter at perturbations, such as magnetic or
nonmagnetic adatoms or clusters on surfaces, an electronic resonance, localized
at the adatom site, can develop below the bottom of the surface state band for
both spin channels. In the case of adatoms, these states have been found very
recently in scanning tunneling spectroscopy experiments\cite{limot,olsson} for
the Cu(111) and Ag(111) surfaces. Motivated by these experiments, we carried
out a systematic theoretical investigation of the electronic structure of these
surface states in the presence of magnetic and non-magnetic atoms on Cu(111).
We found that Ca and all 3 adatoms lead to a split-off state at the bottom
of the surface band which is, however, not seen for the elements Ga and
Ge. The situation is completely reversed if the impurities are embedded in the
surface: Ga and Ge are able to produce a split-off state whereas the 3
impurities do not. The resonance arises from the s-state of the impurities and
is explained in terms of strength and interaction nature (attraction or
repulsion) of the perturbing potential.Comment: 6 pages, 5 figure
Hysteretic resistance spikes in quantum Hall ferromagnets without domains
We use spin-density-functional theory to study recently reported hysteretic
magnetoresistance \rho_{xx} spikes in Mn-based 2D electron gases
[Jaroszy\'{n}ski et al. Phys. Rev. Lett. (2002)]. We find hysteresis loops in
our calculated Landau fan diagrams and total energies signaling
quantum-Hall-ferromagnet phase transitions. Spin-dependent exchange-correlation
effects are crucial to stabilize the relevant magnetic phases arising from
distinct symmetry-broken excited- and ground-state solutions of the Kohn-Sham
equations. Besides hysteretic spikes in \rho_{xx}, we predict hysteretic dips
in the Hall resistance \rho_{xy}. Our theory, without domain walls,
satisfactorily explains the recent data.Comment: 4 pages, 4 figures, published version (some changes to the text; same
figures as in v1
Quantum interference in deformed carbon nanotube waveguides
Quantum interference (QI) in two types of deformed carbon nanotubes (CNTs),
i.e., axially stretched and AFM tip-deformed CNTs, has been investigated by the
pi-electron only and four-orbital tight-binding (TB) method. It is found that
the rapid conductance oscillation (RCO) period is very sensitive to the applied
strains, and decreases in an inverse proportion to the deformation degree,
which could be used as a powerful experimental tool to detect precisely the
deformation degree of the deformed CNTs. Also, the sigma-pi coupling effect is
found to be negligible under axially stretched strain, while it works on the
transport properties of the tip-deformed CNTs.Comment: 14 pages and 5 figure
Extracting convergent surface energies from slab calculations
The formation energy of a solid surface can be extracted from slab
calculations if the bulk energy per atom is known. It has been pointed out
previously that the resulting surface energy will diverge with slab thickness
if the bulk energy is in error, in the context of calculations which used
different methods to study the bulk and slab systems. We show here that this
result is equally relevant for state-of-the-art computational methods which
carefully treat bulk and slab systems in the same way. Here we compare
different approaches, and present a solution to the problem that eliminates the
divergence and leads to rapidly convergent and accurate surface energies.Comment: 3 revtex pages, 1 figure, in print on J. Phys. Cond. Mat
The influence of local field corrections on Thomson scattering in non-ideal two-component plasmas
Thomson scattering in non-ideal (collision-dominated) two-component plasmas
is calculated accounting for electron-ion collisions as well as
electron-electron correlations. This is achieved by using a novel interpolation
scheme for the electron-electron response function generalizing the traditional
Mermin approach. Also, ions are treated as randomly distributed inert
scattering centers. The collision frequency is taken as a dynamic and complex
quantity and is calculated from a microscopic quantum-statistical approach.
Implications due to different approximations for the electron-electron
correlation, i.e. different forms of the OCP local field correction, are
discussed
Structurally-driven magnetic state transition of biatomic Fe chains on Ir(001)
Using first-principles calculations, we demonstrate that the magnetic
exchange interaction and the magnetocrystalline anisotropy of biatomic Fe
chains grown in the trenches of the 5x1 reconstructed Ir(001) surface depend
sensitively on the atomic arrangement of the Fe atoms. Two structural
configurations have been considered which are suggested from recent
experiments. They differ by the local symmetry and the spacing between the two
strands of the biatomic Fe chain. Since both configurations are very close in
total energy they may coexist in experiment. We have investigated collinear
ferro- and antiferromagnetic solutions as well as a collinear state with two
moments in one direction and one in the opposite direction (up-down-up-state).
For the structure with a small interchain spacing, there is a strong exchange
interaction between the strands and the ferromagnetic state is energetically
favorable. In the structure with larger spacing, the two strands are
magnetically nearly decoupled and exhibit antiferromagnetic order along the
chain. In both cases, due to hybridization with the Ir substrate the exchange
interaction along the chain axis is relatively small compared to freestanding
biatomic iron chains. The easy magnetization axis of the Fe chains also
switches with the structural configuration and is out-of-plane for the
ferromagnetic chains with small spacing and along the chain axis for the
antiferromagnetic chains with large spacing between the two strands. Calculated
scanning tunneling microscopy images and spectra suggest the possibility to
experimentally distinguish between the two structural and magnetic
configurations.Comment: Accepted for publication in Physical Review
A simple, efficient, and general treatment of the singularities in Hartree-Fock and exact-exchange Kohn-Sham methods for solids
We present a general scheme for treating the integrable singular terms within
exact exchange (EXX) Kohn-Sham or Hartree-Fock (HF) methods for periodic
solids. We show that the singularity corrections for treating these
divergencies depend only on the total number and the positions of k-points and
on the lattice vectors, in particular the unit cell volume, but not on the
particular positions of atoms within the unit cell. The method proposed here to
treat the singularities constitutes a stable, simple to implement, and general
scheme that can be applied to systems with arbitrary lattice parameters within
either the EXX Kohn-Sham or the HF formalism. We apply the singularity
correction to a typical symmetric structure, diamond, and to a more general
structure, trans-polyacetylene. We consider the effect of the singularity
corrections on volume optimisations and k-point convergence. While the
singularity corrections clearly depends on the total number of k-points, it
exhibits a remarkably small dependence upon the choice of the specific
arrangement of the k-points.Comment: 24 pages, 5 Figures, re-submitted to Phys. Rev. B after revision
Interface properties of the NiMnSb/InP and NiMnSb/GaAs contacts
We study the electronic and magnetic properties of the interfaces between the
half-metallic Heusler alloy NiMnSb and the binary semiconductors InP and GaAs
using two different state-of-the-art full-potential \textit{ab-initio}
electronic structure methods. Although in the case of most NiMnSb/InP(001)
contacts the half-metallicity is lost, it is possible to keep a high degree of
spin-polarization when the interface is made up by Ni and P layers. In the case
of the GaAs semiconductor the larger hybridization between the Ni- and
As- orbitals with respect to the hybridization between the Ni- and P-
orbitals destroys this polarization. The (111) interfaces present strong
interface states but also in this case there are few interfaces presenting a
high spin-polarization at the Fermi level which can reach values up to 74%.Comment: 9 pages, 9 figure
Magnetism of 3d transition metal atoms on W(001): submonolayer films
We have investigated random submonolayer films of 3d transition metals on
W(001). The tight-binding linear muffin-tin orbital method combined with the
coherent potential approximation was employed to calculate the electronic
structure of the films. We have estimated local magnetic moments and the
stability of different magnetic structures, namely the ferromagnetic order, the
disordered local moments and the non-magnetic state, by comparing the total
energies of the corresponding systems. It has been found that the magnetic
moments of V and Cr decrease and eventually disappear with decreasing coverage.
On the other hand, Fe retains approximately the same magnetic moment throughout
the whole concentration range from a single impurity to the monolayer coverage.
Mn is an intermediate case between Cr and Fe since it is non-magnetic at very
low coverages and ferromagnetic otherwise.Comment: 5 pages, 3 figures in 6 files; presented at ICN&T 2006, Basel,
Switzerlan
- …
