2,240 research outputs found

    Intrinsic spin Hall effect in platinum metal

    Full text link
    Spin Hall effect in metallic Pt is studied with first-principles relativistic band calculations. It is found that intrinsic spin Hall conductivity (SHC) is as large as 2000(/e)(Ωcm)1\sim 2000 (\hbar/e)(\Omega {\rm cm})^{-1} at low temperature, and decreases down to 200(/e)(Ωcm)1\sim 200 (\hbar/e)(\Omega {\rm cm})^{-1} at room temperature. It is due to the resonant contribution from the spin-orbit splitting of the doubly degenerated dd-bands at high-symmetry LL and XX points near the Fermi level. By modeling these near degeneracies by effective Hamiltonian, we show that SHC has a peak near the Fermi energy and that the vertex correction due to impurity scattering vanishes. We therefore argue that the large spin Hall effect observed experimentally in platinum is of intrinsic nature.Comment: Accepted for publication in Phys. Rev. Let

    Surface state scattering by adatoms on noble metals

    Full text link
    When surface state electrons scatter at perturbations, such as magnetic or nonmagnetic adatoms or clusters on surfaces, an electronic resonance, localized at the adatom site, can develop below the bottom of the surface state band for both spin channels. In the case of adatoms, these states have been found very recently in scanning tunneling spectroscopy experiments\cite{limot,olsson} for the Cu(111) and Ag(111) surfaces. Motivated by these experiments, we carried out a systematic theoretical investigation of the electronic structure of these surface states in the presence of magnetic and non-magnetic atoms on Cu(111). We found that Ca and all 3dd adatoms lead to a split-off state at the bottom of the surface band which is, however, not seen for the spsp elements Ga and Ge. The situation is completely reversed if the impurities are embedded in the surface: Ga and Ge are able to produce a split-off state whereas the 3dd impurities do not. The resonance arises from the s-state of the impurities and is explained in terms of strength and interaction nature (attraction or repulsion) of the perturbing potential.Comment: 6 pages, 5 figure

    Hysteretic resistance spikes in quantum Hall ferromagnets without domains

    Full text link
    We use spin-density-functional theory to study recently reported hysteretic magnetoresistance \rho_{xx} spikes in Mn-based 2D electron gases [Jaroszy\'{n}ski et al. Phys. Rev. Lett. (2002)]. We find hysteresis loops in our calculated Landau fan diagrams and total energies signaling quantum-Hall-ferromagnet phase transitions. Spin-dependent exchange-correlation effects are crucial to stabilize the relevant magnetic phases arising from distinct symmetry-broken excited- and ground-state solutions of the Kohn-Sham equations. Besides hysteretic spikes in \rho_{xx}, we predict hysteretic dips in the Hall resistance \rho_{xy}. Our theory, without domain walls, satisfactorily explains the recent data.Comment: 4 pages, 4 figures, published version (some changes to the text; same figures as in v1

    Quantum interference in deformed carbon nanotube waveguides

    Full text link
    Quantum interference (QI) in two types of deformed carbon nanotubes (CNTs), i.e., axially stretched and AFM tip-deformed CNTs, has been investigated by the pi-electron only and four-orbital tight-binding (TB) method. It is found that the rapid conductance oscillation (RCO) period is very sensitive to the applied strains, and decreases in an inverse proportion to the deformation degree, which could be used as a powerful experimental tool to detect precisely the deformation degree of the deformed CNTs. Also, the sigma-pi coupling effect is found to be negligible under axially stretched strain, while it works on the transport properties of the tip-deformed CNTs.Comment: 14 pages and 5 figure

    Extracting convergent surface energies from slab calculations

    Full text link
    The formation energy of a solid surface can be extracted from slab calculations if the bulk energy per atom is known. It has been pointed out previously that the resulting surface energy will diverge with slab thickness if the bulk energy is in error, in the context of calculations which used different methods to study the bulk and slab systems. We show here that this result is equally relevant for state-of-the-art computational methods which carefully treat bulk and slab systems in the same way. Here we compare different approaches, and present a solution to the problem that eliminates the divergence and leads to rapidly convergent and accurate surface energies.Comment: 3 revtex pages, 1 figure, in print on J. Phys. Cond. Mat

    The influence of local field corrections on Thomson scattering in non-ideal two-component plasmas

    Full text link
    Thomson scattering in non-ideal (collision-dominated) two-component plasmas is calculated accounting for electron-ion collisions as well as electron-electron correlations. This is achieved by using a novel interpolation scheme for the electron-electron response function generalizing the traditional Mermin approach. Also, ions are treated as randomly distributed inert scattering centers. The collision frequency is taken as a dynamic and complex quantity and is calculated from a microscopic quantum-statistical approach. Implications due to different approximations for the electron-electron correlation, i.e. different forms of the OCP local field correction, are discussed

    Structurally-driven magnetic state transition of biatomic Fe chains on Ir(001)

    Get PDF
    Using first-principles calculations, we demonstrate that the magnetic exchange interaction and the magnetocrystalline anisotropy of biatomic Fe chains grown in the trenches of the 5x1 reconstructed Ir(001) surface depend sensitively on the atomic arrangement of the Fe atoms. Two structural configurations have been considered which are suggested from recent experiments. They differ by the local symmetry and the spacing between the two strands of the biatomic Fe chain. Since both configurations are very close in total energy they may coexist in experiment. We have investigated collinear ferro- and antiferromagnetic solutions as well as a collinear state with two moments in one direction and one in the opposite direction (up-down-up-state). For the structure with a small interchain spacing, there is a strong exchange interaction between the strands and the ferromagnetic state is energetically favorable. In the structure with larger spacing, the two strands are magnetically nearly decoupled and exhibit antiferromagnetic order along the chain. In both cases, due to hybridization with the Ir substrate the exchange interaction along the chain axis is relatively small compared to freestanding biatomic iron chains. The easy magnetization axis of the Fe chains also switches with the structural configuration and is out-of-plane for the ferromagnetic chains with small spacing and along the chain axis for the antiferromagnetic chains with large spacing between the two strands. Calculated scanning tunneling microscopy images and spectra suggest the possibility to experimentally distinguish between the two structural and magnetic configurations.Comment: Accepted for publication in Physical Review

    A simple, efficient, and general treatment of the singularities in Hartree-Fock and exact-exchange Kohn-Sham methods for solids

    Full text link
    We present a general scheme for treating the integrable singular terms within exact exchange (EXX) Kohn-Sham or Hartree-Fock (HF) methods for periodic solids. We show that the singularity corrections for treating these divergencies depend only on the total number and the positions of k-points and on the lattice vectors, in particular the unit cell volume, but not on the particular positions of atoms within the unit cell. The method proposed here to treat the singularities constitutes a stable, simple to implement, and general scheme that can be applied to systems with arbitrary lattice parameters within either the EXX Kohn-Sham or the HF formalism. We apply the singularity correction to a typical symmetric structure, diamond, and to a more general structure, trans-polyacetylene. We consider the effect of the singularity corrections on volume optimisations and k-point convergence. While the singularity corrections clearly depends on the total number of k-points, it exhibits a remarkably small dependence upon the choice of the specific arrangement of the k-points.Comment: 24 pages, 5 Figures, re-submitted to Phys. Rev. B after revision

    Interface properties of the NiMnSb/InP and NiMnSb/GaAs contacts

    Get PDF
    We study the electronic and magnetic properties of the interfaces between the half-metallic Heusler alloy NiMnSb and the binary semiconductors InP and GaAs using two different state-of-the-art full-potential \textit{ab-initio} electronic structure methods. Although in the case of most NiMnSb/InP(001) contacts the half-metallicity is lost, it is possible to keep a high degree of spin-polarization when the interface is made up by Ni and P layers. In the case of the GaAs semiconductor the larger hybridization between the Ni-dd and As-pp orbitals with respect to the hybridization between the Ni-dd and P-pp orbitals destroys this polarization. The (111) interfaces present strong interface states but also in this case there are few interfaces presenting a high spin-polarization at the Fermi level which can reach values up to 74%.Comment: 9 pages, 9 figure

    Magnetism of 3d transition metal atoms on W(001): submonolayer films

    Full text link
    We have investigated random submonolayer films of 3d transition metals on W(001). The tight-binding linear muffin-tin orbital method combined with the coherent potential approximation was employed to calculate the electronic structure of the films. We have estimated local magnetic moments and the stability of different magnetic structures, namely the ferromagnetic order, the disordered local moments and the non-magnetic state, by comparing the total energies of the corresponding systems. It has been found that the magnetic moments of V and Cr decrease and eventually disappear with decreasing coverage. On the other hand, Fe retains approximately the same magnetic moment throughout the whole concentration range from a single impurity to the monolayer coverage. Mn is an intermediate case between Cr and Fe since it is non-magnetic at very low coverages and ferromagnetic otherwise.Comment: 5 pages, 3 figures in 6 files; presented at ICN&T 2006, Basel, Switzerlan
    corecore