880 research outputs found
The effect of hydrogen on the deformation behavior of a single crystal nickel-base superalloy
The effect of hydrogen on the tensile deformation behavior of PWA 1480 is presented. Tensile tests were interrupted at different plastic strain levels to observe the development of the dislocation structure. Transmission electron microscopy (TEM) foils were cut perpendicular to the tensile axis to allow the deformation of both phases to be simultaneously observed as well as parallel to zone axes (III) to show the superdislocations on their slip planes. Similar to other nickel-base superalloys, hydrogen was detrimental to the room temperature tensile properties of PWA 1480. There was little effect on strength, however the material was severely embrittled. Even without hydrogen, the elongation-to-failure was only approximately 3 percent. The tensile fracture surface was made up primarily of ductile voids with regions of cleavage fracture. These cleavage facets are the eutectic (gamma') in the microstructure. It was shown by quantitative fractography that hydrogen embrittles the eutectic (gamma') and causes the crack path to seek out and fracture through the eutectic (gamma'). There was two to three times the amount of cleavage on the fracture surface of the hydrogen-charged samples than on the surface of the uncharged samples. The effect of hydrogen can also be seen in the dislocation structure. There is a marked tendency for dislocation trapping in the gamma matrix with and without hydrogen at all plastic strain levels. Without hydrogen there is a high dislocation density in the gamma matrix leading to strain exhaustion in this region and failure through the matrix. The dislocation structure at failure with hydrogen is slightly different. The TEM foils cut parallel to zone axes (III) showed dislocations wrapping around gamma precipitates. Zone axes (001) foils show that there is a lower dislocation density in the gamma matrix which can be linked to the effects of hydrogen on the fracture behavior. The primary activity in the gamma precipitates is in the form of superlattice intrinsic stacking faults (SISFs). These faults have also been reported in other ordered alloys and superalloys
Effect of hydrogen on deformation structure and properties of CMSX-2 nickel-base single-crystal superalloy
Material used in this study was a heat of the alloy CMSX-2. This nickel-based superalloy was provided in the form of oriented single crystals, solutionized for 3 hrs at 1315 C. It was then usually heat treated as follows: 1050 C/16h/air cool + 850 C/48h/air cool. The resulting microstructure is dominated by cuboidal, ordered gamma precipitates with a volume fraction of about 75% and an average size of 0.5 microns. In brief, the most compelling hydrogen induced-changes in deformation structure are: (1) enhanced dislocation accumulation in the gamma matrix; and (2) more extensive cross-slip of superdislocations in the gamma precipitates. The enhanced dislocation density in gamma acts to decrease the mean free path of a superdislocation, while easier cross slip hinders superdislocation movement by providing pinning points in the form of sessile jobs. Both processes contribute to the increase of flow stress and the notable work hardening that occurs prior to fracture
Resolution of a high performance cavity beam position monitor system
International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved - ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. A metrology system for the three BPMs was recently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame and has demonstrated that the three BPMs behave as a rigid-body to less than 5 nm. To date, we have demonstrated a BPM resolution of less than 20 nm over a dynamic range of +/- 20 microns
Preparation of low-sulfur platinum and platinum aluminide layers in thermal barrier coatings
A method for preparing a coated nickel-base superalloy article reduces the sulfur content of the surface region of the metallic coating layers to low levels, thereby improving the adhesion of the coating layers to the article. The method includes depositing a first layer of platinum overlying the surface of a substrate, depositing a second layer of aluminum over the platinum, and final desulfurizing the article by heating the article to elevated temperature, preferably in hydrogen, and removing a small amount of material from the surface that was exposed during the step of heating. A ceramic layer may be deposited over the desulfurized article. The article may also be similarly desulfurized at other points in the fabrication procedure
Draft Genome Sequence of Frankia sp. Strain QA3, a Nitrogen-Fixing Actinobacterium Isolated from the Root Nodule of Alnus nitida
Members of the actinomycete genus Frankia form a nitrogen-fixing symbiosis with 8 different families of actinorhizal plants. We report a high-quality draft genome sequence for Frankia sp. strain QA3, a nitrogen-fixing actinobacterium isolated from root nodules of Alnus nitida
The nucleon-nucleon interaction
We review the major progress of the past decade concerning our understanding
of the nucleon-nucleon interaction. The focus is on the low-energy region
(below pion production threshold), but a brief outlook towards higher energies
is also given. The items discussed include charge-dependence, the precise value
of the coupling constant, phase shift analysis and high-precision NN
data and potentials. We also address the issue of a proper theory of nuclear
forces. Finally, we summarize the essential open questions that future research
should be devoted to.Comment: 42 pages, 12 figures, iopart.cls style; Topical Review prepared for
J. Phys. G: Nucl. Part. Phy
Draft Genome Sequence of Frankia sp. Strain CN3, an Atypical, Noninfective (Nod–) Ineffective (Fix–) Isolate from Coriaria nepalensis
We report here the genome sequence of Frankia sp. strain CN3, which was isolated from Coriaria nepalensis. This genome sequence is the first from the fourth lineage of Frankia, strains of which are unable to reinfect actinorhizal plants. At 10 Mb, it represents the largest Frankia genome sequenced to date
Recommended from our members
On the Time Interval Distribution Between Neutron Counts in a 3He Proportional Counter with Detector Dead Time
- …
