8,280 research outputs found

    Symmetries of SU(2) Skyrmion in Hamiltonian and Lagrangian approaches

    Full text link
    We apply the Batalin-Fradkin-Tyutin (BFT) method to the SU(2) Skyrmion to study the full symmetry structure of the model at the first class Hamiltonian level. On the other hand, we also analyze the symmetry structure of the action having the WZ term, which corresponds to this Hamiltonian, in the framework of the Lagrangian approach. Furthermore, following the BFV formalism we derive the BRST invariant gauge fixed Lagrangian from the above extended action.Comment: 14 pages, final revised version, to appear in Mod. Phys. Lett.

    Symplectic embedding and Hamilton-Jacobi analysis of Proca model

    Full text link
    Following the symplectic approach we show how to embed the Abelian Proca model into a first-class system by extending the configuration space to include an additional pair of scalar fields, and compare it with the improved Dirac scheme. We obtain in this way the desired Wess-Zumino and gauge fixing terms of BRST invariant Lagrangian. Furthermore, the integrability properties of the second-class system described by the Abelian Proca model are investigated using the Hamilton-Jacobi formalism, where we construct the closed Lie algebra by introducing operators associated with the generalized Poisson brackets.Comment: 24 page

    Spectra of Free Diquark in the Bethe-Salpeter Approach

    Full text link
    In this work, we employ the Bethe-Salpeter (B-S) equation to investigate the spectra of free diquarks and their B-S wave functions. We find that the B-S approach can be consistently applied to study the diqaurks with two heavy quarks or one heavy and one light quarks, but for two light-quark systems, the results are not reliable. There are a few free parameters in the whole scenario which can only be fixed phenomenologically. Thus, to determine them, one has to study baryons which are composed of quarks and diquarks.Comment: 16 pages, no figure

    Constraint structure of O(3) nonlinear sigma model revisited

    Full text link
    We study the constraint structure of the O(3) nonlinear sigma model in the framework of the Lagrangian, symplectic, Hamilton-Jacobi as well as the Batalin-Fradkin-Tyutin embedding procedure.Comment: 17 page

    Weakly Nonlinear AC Response: Theory and Application

    Get PDF
    We report a microscopic and general theoretical formalism for electrical response which is appropriate for both DC and AC weakly nonlinear quantum transport. The formalism emphasizes the electron-electron interaction and maintains current conservation and gauge invariance. It makes a formal connection between linear response and scattering matrix theory at the weakly nonlinear level. We derive the dynamic conductance and predict the nonlinear-nonequilibrium charge distribution. The definition of a nonlinear capacitance leads to a remarkable scaling relation which can be measured to give microscopic information about a conductor

    Higher dimensional flat embeddings of (2+1) dimensional black holes

    Full text link
    We obtain the higher dimensional global flat embeddings of static, rotating, and charged BTZ black holes. On the other hand, we also study the similar higher dimensional flat embeddings of the (2+1) de Sitter black holes which are the counterparts of the anti-de Sitter BTZ black holes. As a result, the charged dS black hole is shown to be embedded in (3+2) GEMS, contrast to the charged BTZ one having (3+3) GEMS structure.Comment: 16pages, revtex, no figures, to appear in Phys. Rev.

    ab initio modeling of open systems: charge transfer, electron conduction, and molecular switching of a C_{60} device

    Get PDF
    We present an {\it ab initio} analysis of electron conduction through a C60C_{60} molecular device. Charge transfer from the device electrodes to the molecular region is found to play a crucial role in aligning the lowest unoccupied molecular orbital (LUMO) of the C60C_{60} to the Fermi level of the electrodes. This alignment induces a substantial device conductance of 2.2×(2e2/h)\sim 2.2 \times (2e^2/h). A gate potential can inhibit charge transfer and introduce a conductance gap near EFE_F, changing the current-voltage characteristics from metallic to semi-conducting, thereby producing a field effect molecular current switch

    Global embeddings of scalar-tensor theories in (2+1)-dimensions

    Get PDF
    We obtain (3+3)- or (3+2)-dimensional global flat embeddings of four uncharged and charged scalar-tensor theories with the parameters B or L in the (2+1)-dimensions, which are the non-trivially modified versions of the Banados-Teitelboim-Zanelli (BTZ) black holes. The limiting cases B=0 or L=0 exactly are reduced to the Global Embedding Minkowski Space (GEMS) solution of the BTZ black holes.Comment: 19 pages, 2 figure

    Symplectic quantization of self-dual master Lagrangian

    Get PDF
    We consider the master Lagrangian of Deser and Jackiw, interpolating between the self-dual and the Maxwell-Chern-Simons Lagrangian, and quantize it following the symplectic approach, as well as the traditional Dirac scheme. We demonstrate the equivalence of these procedures in the subspace of the second-class constraints. We then proceed to embed this mixed first- and second-class system into an extended first-class system within the framework of both approaches, and construct the corresponding generator for this extended gauge symmetry in both formulations.Comment: 27 page

    Production of the neutral toppion at the e gamma colliders

    Full text link
    In the framework of topcolor-assisted technicolor(TC2) model, we study a neutral toppion production process eγeΠt0e^{-}\gamma\to e^{-}\Pi^{0}_{t} in this paper. Our results show that the production cross section of eγeΠt0e^{-}\gamma\to e^{-}\Pi^{0}_{t} can reach the level of several tens fb, and over 10310^{3} neutral toppion events can be produced in the planned e+ee^+e^- linear colliders each year. Therefore, such a toppion production process provides us a unique chance to detect toppion events and test the TC2 model. On the other hand, the cross section of eγeΠt0e^{-}\gamma\to e^{-}\Pi^{0}_{t} is about one order of magnitude larger than those of some similar processes in SM and MSSM(i.e., eγeHe^{-}\gamma\to e^{-}H in SM and eγeH0(A0,h0)e^{-}\gamma\to e^{-}H^{0}(A^0,h^0) in MSSM). So, we can easily distinguish the neutral toppion from other neutral Higgs bosons in SM and MSSM.Comment: 12 pages, 4 figures, The paper has been accepted by Phys.Rev.
    corecore