1,220 research outputs found

    On Passion and Sports Fans:A Look at Football

    Get PDF
    The purpose of the present research was to test the applicability of the Dualistic Model of Passion (Vallerand et al., 2003) to being a sport (football) fan. The model posits that passion is a strong inclination toward an activity that individuals like (or even love), that they value, and in which they invest time and energy. Furthermore, two types of passion are proposed: harmonious and obsessive passion. While obsessive passion entails an uncontrollable urge to engage in the passionate activity, harmonious passion entails a sense of volition while engaging in the activity. Finally, the model posits that harmonious passion leads to more adaptive outcomes than obsessive passion. Three studies provided support for this dualistic conceptualization of passion. Study 1 showed that harmonious passion was positively associated with adaptive behaviours (e.g., celebrate the team’s victory), while obsessive passion was rather positively associated with maladaptive behaviours (e.g., to risk losing one’s employment to go to the team’s game). Study 2 used a short Passion Scale and showed that harmonious passion was positively related to the positive affective life of fans during the 2006 FIFA World Cup, psychological health (self-esteem and life satisfaction), and public displays of adaptive behaviours (e.g., celebrating one’s team victory in the streets), while obsessive passion was predictive of maladaptive affective life (e.g., hating opposing team’s fans) and behaviours (e.g., mocking the opposing team’s fans). Finally, Study 3 examined the role of obsessive passion as a predictor of partner’s conflict that in turn undermined partner’s relationship satisfaction. Overall, the present results provided support for the Dualistic Model of Passion. The conceptual and applied implications of the findings are discussed

    Simulations of the temporal and spatial resolution for a compact time-resolved electron diffractometer

    Get PDF
    A novel compact electron gun for use in time-resolved gas electron diffraction experiments has recently been designed and commissioned. In this paper we present and discuss the extensive simulations that were performed to underpin the design in terms of the spatial and temporal qualities of the pulsed electron beam created by the ionisation of a gold photocathode using a femtosecond laser. The response of the electron pulses to a solenoid lens used to focus the electron beam has also been studied. The simulated results show that focussing the electron beam affects the overall spatial and temporal resolution of the experiment in a variety of ways, and that factors that improve the resolution of one parameter can often have a negative effect on the other. A balance must, therefore, be achieved between spatial and temporal resolution. The optimal experimental time resolution for the apparatus is predicted to be 416 fs for studies of gas-phase species, while the predicted spatial resolution of better than 2 nm-1 compares well with traditional time-averaged electron diffraction set-ups

    Interleukin-1β sequesters hypoxia inducible factor 2α to the primary cilium.

    Get PDF
    BACKGROUND: The primary cilium coordinates signalling in development, health and disease. Previously we have shown that the cilium is essential for the anabolic response to loading and the inflammatory response to interleukin-1β (IL-1β). We have also shown the primary cilium elongates in response to IL-1β exposure. Both anabolic phenotype and inflammatory pathology are proposed to be dependent on hypoxia-inducible factor 2 alpha (HIF-2α). The present study tests the hypothesis that an association exists between the primary cilium and HIFs in inflammatory signalling. RESULTS: Here we show, in articular chondrocytes, that IL-1β-induces primary cilia elongation with alterations to cilia trafficking of arl13b. This elongation is associated with a transient increase in HIF-2α expression and accumulation in the primary cilium. Prolyl hydroxylase inhibition results in primary cilia elongation also associated with accumulation of HIF-2α in the ciliary base and axoneme. This recruitment and the associated cilia elongation is not inhibited by blockade of HIFα transcription activity or rescue of basal HIF-2α expression. Hypomorphic mutation to intraflagellar transport protein IFT88 results in limited ciliogenesis. This is associated with increased HIF-2α expression and inhibited response to prolyl hydroxylase inhibition. CONCLUSIONS: These findings suggest that ciliary sequestration of HIF-2α provides negative regulation of HIF-2α expression and potentially activity. This study indicates, for the first time, that the primary cilium regulates HIF signalling during inflammation

    Structurally Homologous All β-Barrel Proteins Adopt Different Mechanisms of Folding

    Get PDF
    AbstractAcidic fibroblast growth factors from human (hFGF-1) and newt (nFGF-1) (Notopthalamus viridescens) are 16-kDa, all β-sheet proteins with nearly identical three-dimensional structures. Guanidine hydrochloride (GdnHCl)-induced unfolding of hFGF-1 and nFGF-1 monitored by fluorescence and far-UV circular dichroism (CD) shows that the FGF-1 isoforms differ significantly in their thermodynamic stabilities. GdnHCl-induced unfolding of nFGF-1 follows a two-state (Native state to Denatured state(s)) mechanism without detectable intermediate(s). By contrast, unfolding of hFGF-1 monitored by fluorescence, far-UV circular dichroism, size-exclusion chromatography, and NMR spectroscopy shows that the unfolding process is noncooperative and proceeds with the accumulation of stable intermediate(s) at 0.96M GdnHCl. The intermediate (in hFGF-1) populated maximally at 0.96M GdnHCl has molten globule-like properties and shows strong binding affinity to the hydrophobic dye, 1-Anilino-8-naphthalene sulfonate (ANS). Refolding kinetics of hFGF-1 and nFGF-1 monitored by stopped-flow fluorescence reveal that hFGF-1 and nFGF-1 adopts different folding mechanisms. The observed differences in the folding/unfolding mechanisms of nFGF-1 and hFGF-1 are proposed to be either due to differential stabilizing effects of the charged denaturant (Gdn+ Cl−) on the intermediate state(s) and/or due to differences in the structural interactions stabilizing the native conformation(s) of the FGF-1 isoforms

    Primary cilia elongation in response to interleukin-1 mediates the inflammatory response

    Get PDF
    Primary cilia are singular, cytoskeletal organelles present in the majority of mammalian cell types where they function as coordinating centres for mechanotransduction, Wnt and hedgehog signalling. The length of the primary cilium is proposed to modulate cilia function, governed in part by the activity of intraflagellar transport (IFT). In articular cartilage, primary cilia length is increased and hedgehog signaling activated in osteoarthritis (OA). Here, we examine primary cilia length with exposure to the quintessential inflammatory cytokine interleukin-1 (IL-1), which is up-regulated in OA. We then test the hypothesis that the cilium is involved in mediating the downstream inflammatory response. Primary chondrocytes treated with IL-1 exhibited a 50 % increase in cilia length after 3 h exposure. IL-1-induced cilia elongation was also observed in human fibroblasts. In chondrocytes, this elongation occurred via a protein kinase A (PKA)-dependent mechanism. G-protein coupled adenylate cyclase also regulated the length of chondrocyte primary cilia but not downstream of IL-1. Chondrocytes treated with IL-1 exhibit a characteristic increase in the release of the inflammatory chemokines, nitric oxide and prostaglandin E2. However, in cells with a mutation in IFT88 whereby the cilia structure is lost, this response to IL-1 was significantly attenuated and, in the case of nitric oxide, completely abolished. Inhibition of IL-1-induced cilia elongation by PKA inhibition also attenuated the chemokine response. These results suggest that cilia assembly regulates the response to inflammatory cytokines. Therefore, the cilia proteome may provide a novel therapeutic target for the treatment of inflammatory pathologies, including OA

    Attentive Learning of Sequential Handwriting Movements: A Neural Network Model

    Full text link
    Defense Advanced research Projects Agency and the Office of Naval Research (N00014-95-1-0409, N00014-92-J-1309); National Science Foundation (IRI-97-20333); National Institutes of Health (I-R29-DC02952-01)

    Optimal use of visual information in adolescents and young adults with developmental coordination disorder

    Get PDF
    Recent reports offer contrasting views on whether or not the use of online visual control is impaired in individuals with developmental coordination disorder (DCD). This study explored the optimal temporal basis for processing and using visual information in adolescents and young adults with DCD. Participants were 22 adolescents and young adults (12 males and 10 females; M = 19 years, SD = 3). Half had been diagnosed with DCD as children and still performed poorly on the movement assessment battery for children (DCD group; n = 11), and half reported typical development (TD group; n = 11) and were age- and gender-matched with the DCD group. We used performance on a steering task as a measure of information processing and examined the use of advance visual information. The conditions varied the duration of advance visual information: 125, 250, 500, 750, and 1,000 ms. With increased duration of advance visual information, the TD group showed a pattern of linear improvement. For the DCD group, however, the pattern was best described by a U-curve where optimal performance occurred with about 750 ms of advance information. The results suggest that the DCD group has an underlying preference for immediate online processing of visual information. The exact timing for optimal online control may depend crucially on the task, but too much advance information is detrimental to performance

    Night rendering

    Get PDF
    Journal ArticleThe issues of realistically rendering naturally illuminated scenes at night are examined. This requires accurate models for moonlight, night skylight, and starlight. In addition, several issues in tone reproduction are discussed: eliminatiing high frequency information invisible to scotopic (night vision) observers; representing the flare lines around stars; determining the dominant hue for the displayed image. The lighting and tone reproduction are shown on a variety of models

    A Social Identity Approach to Sport Psychology: Principles, Practice, and Prospects.

    Get PDF
    Drawing on social identity theory and self-categorization theory, we outline an approach to sport psychology that understands groups not simply as features of sporting contexts but rather as elements that can be, and often are, incorporated into a person's sense of self and, through this, become powerful determinants of their sport-related behavior. The underpinnings of this social identity approach are outlined, and four key lessons for sport that are indicative of the analytical and practical power of the approach are presented. These suggest that social identity is the basis for sports group (1) behavior, (2) formation and development, (3) support and stress appraisal, and (4) leadership. Building on recent developments within sport science, we outline an agenda for future research by identifying a range of topics to which the social identity approach could fruitfully contribute
    corecore