1,372 research outputs found
"Click" Patterning of Self-Assembled Monolayers on Hydrogen-Terminated Silicon Surfaces and Their Characterization Using Light-Addressable Potentiometric Sensors
China Scholarship Council for funding (J.W., F.W., and J.Z.
Food provision for older people receiving home care from the perspectives of home-care workers
Malnutrition is a significant cause of morbidity and mortality, particularly among older people. Attention has focused on the inadequacies of food provision in institutions, yet the majority suffering from malnutrition live in the community. The aim of this study was to explore barriers and facilitators to food provision for older people receiving home care. It was a qualitative exploratory study using semi-structured interviews with nine home-care workers in June 2013 employed by independent agencies in a large city in northern England. Data were analysed thematically, based on the principles of grounded theory. Findings showed that significant time pressures limited home-care workers in their ability to socially engage with service users at mealtimes, or provide them with anything other than ready meals. Enabling choice was considered more important than providing a healthy diet, but choice was limited by food availability and reliance on families for shopping. Despite their knowledge of service users and their central role in providing food, home-care workers received little nutritional training and were not involved by healthcare professionals in the management of malnutrition. Despite the rhetoric of individual choice and importance of social engagement and nutrition for health and well-being, nutritional care has been significantly compromised by cuts to social care budgets. The potential role for home-care workers in promoting good nutrition in older people is undervalued and undermined by the lack of recognition, training and time dedicated to food-related care. This has led to a situation whereby good quality food and enjoyable mealtimes are denied to many older people on the basis that they are unaffordable luxuries rather than an integral component of fundamental care. © 2014 John Wiley & Sons Ltd
New approaches to investigating the function of mycelial networks
Fungi play a key role in ecosystem nutrient cycles by scavenging, concentrating, translocating and redistributing nitrogen. To quantify and predict fungal nitrogen redistribution, and assess the importance of the integrity of fungal networks in soil for ecosystem function, we need better understanding of the structures and processes involved. Until recently nitrogen translocation has been experimentally intractable owing to the lack of a suitable radioisotope tracer for nitrogen, and the impossibility of observing nitrogen translocation in real time under realistic conditions. We have developed an imaging method for recording the magnitude and direction of amino acid flow through the whole mycelial network as it captures, assimilates and channels its carbon and nitrogen resources, while growing in realistically heterogeneous soil microcosms. Computer analysis and modeling, based on these digitized video records, can reveal patterns in transport that suggest experimentally testable hypotheses. Experimental approaches that we are developing include genomics and stable isotope NMR to investigate where in the system nitrogen compounds are being acquired and stored, and where they are mobilized for transport or broken down. The results are elucidating the interplay between environment, metabolism, and the development and function of transport networks as mycelium forages in soil. The highly adapted and selected foraging networks of fungi may illuminate fundamental principles applicable to other supply networks
Simulating Intestinal Transporter and Enzyme Activity in a Physiologically Based Pharmacokinetic Model for Tenofovir Disoproxil Fumarate
Tenofovir disoproxil fumarate (TDF), a prodrug of tenofovir, has oral bioavailability (25%) limited by intestinal transport (P-glycoprotein), and intestinal degradation (carboxylesterase). However, the influence of luminal pancreatic enzymes is not fully understood. Physiologically based pharmacokinetic (PBPK) modeling has utility for estimating drug exposure from in vitro data. This study aimed to develop a PBPK model that included luminal enzyme activity to inform dose reduction strategies. TDF and tenofovir stability in porcine pancrelipase concentrations was assessed (0, 0.48, 4.8, 48, and 480 U/ml of lipase; 1 mM TDF; 37°C; 0 to 30 min). Samples were analyzed using mass spectrometry. TDF stability and permeation data allowed calculation of absorption rates within a human PBPK model to predict plasma exposure following 6 days of once-daily dosing with 300 mg of TDF. Regional absorption of drug was simulated across gut segments. TDF was degraded by pancrelipase (half-lives of 0.07 and 0.62 h using 480 and 48 U/ml, respectively). Previously reported maximum concentration (Cmax; 335 ng/ml), time to Cmax (Tmax; 2.4 h), area under the concentration-time curve from 0 to 24 h (AUC0–24; 3,045 ng · h/ml), and concentration at 24 h (C24; 48.3 ng/ml) were all within a 0.5-fold difference from the simulated Cmax (238 ng/ml), Tmax (3 h), AUC0–24 (3,036 ng · h/ml), and C24 (42.7 ng/ml). Simulated TDF absorption was higher in duodenum and jejunum than in ileum (p<0.05). These data support that TDF absorption is limited by the action of intestinal lipases. Our results suggest that bioavailability may be improved by protection of drug from intestinal transporters and enzymes, for example, by coadministration of enzyme-inhibiting agents or nanoformulation strategies
Disposable MMP-9 sensor based on the degradation of peptide cross-linked hydrogel films using electrochemical impedance spectroscopy
Barts and The London Charity and Queen Mary Innovation Lt
Gridded and direct Epoch of Reionisation bispectrum estimates using the Murchison Widefield Array
We apply two methods to estimate the 21~cm bispectrum from data taken within
the Epoch of Reionisation (EoR) project of the Murchison Widefield Array (MWA).
Using data acquired with the Phase II compact array allows a direct bispectrum
estimate to be undertaken on the multiple redundantly-spaced triangles of
antenna tiles, as well as an estimate based on data gridded to the -plane.
The direct and gridded bispectrum estimators are applied to 21 hours of
high-band (167--197~MHz; =6.2--7.5) data from the 2016 and 2017 observing
seasons. Analytic predictions for the bispectrum bias and variance for point
source foregrounds are derived. We compare the output of these approaches, the
foreground contribution to the signal, and future prospects for measuring the
bispectra with redundant and non-redundant arrays. We find that some triangle
configurations yield bispectrum estimates that are consistent with the expected
noise level after 10 hours, while equilateral configurations are strongly
foreground-dominated. Careful choice of triangle configurations may be made to
reduce foreground bias that hinders power spectrum estimators, and the 21~cm
bispectrum may be accessible in less time than the 21~cm power spectrum for
some wave modes, with detections in hundreds of hours.Comment: 19 pages, 10 figures, accepted for publication in PAS
Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants
Plants provide fundamental support systems for life on Earth and are the basis for all terrestrial ecosystems; a decline in plant diversity will be detrimental to all other groups of organisms including humans. Decline in plant diversity has been hard to quantify, due to the huge numbers of known and yet to be discovered species and the lack of an adequate baseline assessment of extinction risk against which to track changes. The biodiversity of many remote parts of the world remains poorly known, and the rate of new assessments of extinction risk for individual plant species approximates the rate at which new plant species are described. Thus the question ‘How threatened are plants?’ is still very difficult to answer accurately. While completing assessments for each species of plant remains a distant prospect, by assessing a randomly selected sample of species the Sampled Red List Index for Plants gives, for the first time, an accurate view of how threatened plants are across the world. It represents the first key phase of ongoing efforts to monitor the status of the world’s plants. More than 20% of plant species assessed are threatened with extinction, and the habitat with the most threatened species is overwhelmingly tropical rain forest, where the greatest threat to plants is anthropogenic habitat conversion, for arable and livestock agriculture, and harvesting of natural resources. Gymnosperms (e.g. conifers and cycads) are the most threatened group, while a third of plant species included in this study have yet to receive an assessment or are so poorly known that we cannot yet ascertain whether they are threatened or not. This study provides a baseline assessment from which trends in the status of plant biodiversity can be measured and periodically reassessed
Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments
Copyright 2013 ASM International. This paper was published in Metallurgical and Materials Transactions A, 44A(3), 1230 - 1253, and is made
available as an electronic reprint with the permission of ASM International. One print or electronic copy may
be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via
electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or
modification of the content of this paper are prohibited.Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (“pop-in” vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor
The evaluation of dynamic human-computer interaction
This thesis describes the development and evaluation of a theoretical framework to account for the
dynamic aspects of behaviour at the Human-Computer Interface (HCIF). The purpose behind this
work is to allow for the consideration of dynamic Human-Computer Interaction (HCI) in the design
of interactive computer systems, and to facilitate the generation of design tools for this purpose.
The work describes an example of a design tool which demonstrates how designers of interactive
computer systems may account for some aspects of the dynamics of behaviour, involved with the
use of computers, in the design of new interactive systems. The thesis offers empirical and literary
evidence to support the validity of the dynamic factors governing the interaction of humans with
computers
A comparison of the ability of the National Early Warning Score and the National Early Warning Score 2 to identify patients at risk of in-hospital mortality: a multi-centre database study
AIMS:To compare the ability of the National Early Warning Score (NEWS) and the National Early Warning Score 2 (NEWS2) to identify patients at risk of in-hospital mortality and other adverse outcomes. METHODS:We undertook a multi-centre retrospective observational study at five acute hospitals from two UK NHS Trusts. Data were obtained from completed adult admissions who were not fit enough to be discharged alive on the day of admission. Diagnostic coding and oxygen prescriptions were used to identify patients with type II respiratory failure (T2RF). The primary outcome was in-hospital mortality within 24 h of a vital signs observation. Secondary outcomes included unanticipated intensive care unit admission or cardiac arrest within 24 h of a vital signs observation. Discrimination was assessed using the c-statistic. RESULTS:Among 251,266 adult admissions, 48,898 were identified to be at risk of T2RF by diagnostic coding. In this group, NEWS2 showed statistically significant lower discrimination (c-statistic, 95% CI) for identifying in-hospital mortality within 24 h (0.860, 0.857-0.864) than NEWS (0.881, 0.878-0.884). For 1394 admissions with documented T2RF, discrimination was similar for both systems: NEWS2 (0.841, 0.827-0.855), NEWS (0.862, 0.848-0.875). For all secondary endpoints, NEWS2 showed no improvements in discrimination. CONCLUSIONS:NEWS2 modifications to NEWS do not improve discrimination of adverse outcomes in patients with documented T2RF and decrease discrimination in patients at risk of T2RF. Further evaluation of the relationship between SpO2 values, oxygen therapy and risk should be investigated further before wide-scale adoption of NEWS2.Marco A.F. Pimentel, Oliver C. Redfern, Stephen Gerry, Gary S. Collins, James Malycha, David Prytherch ... et al
- …
