1,074 research outputs found

    Realistic theory of electronic correlations in nanoscopic systems

    Full text link
    Nanostructures with open shell transition metal or molecular constituents host often strong electronic correlations and are highly sensitive to atomistic material details. This tutorial review discusses method developments and applications of theoretical approaches for the realistic description of the electronic and magnetic properties of nanostructures with correlated electrons. First, the implementation of a flexible interface between density functional theory and a variant of dynamical mean field theory (DMFT) highly suitable for the simulation of complex correlated structures is explained and illustrated. On the DMFT side, this interface is largely based on recent developments of quantum Monte Carlo and exact diagonalization techniques allowing for efficient descriptions of general four fermion Coulomb interactions, reduced symmetries and spin-orbit coupling, which are explained here. With the examples of the Cr (001) surfaces, magnetic adatoms, and molecular systems it is shown how the interplay of Hubbard U and Hund's J determines charge and spin fluctuations and how these interactions drive different sorts of correlation effects in nanosystems. Non-local interactions and correlations present a particular challenge for the theory of low dimensional systems. We present our method developments addressing these two challenges, i.e., advancements of the dynamical vertex approximation and a combination of the constrained random phase approximation with continuum medium theories. We demonstrate how non-local interaction and correlation phenomena are controlled not only by dimensionality but also by coupling to the environment which is typically important for determining the physics of nanosystems.Comment: tutorial review submitted to EPJ-ST (scientific report of research unit FOR 1346); 14 figures, 26 page

    Local Gating of an Ir(111) Surface Resonance by Graphene Islands

    Full text link
    The influence of graphene islands on the electronic structure of the Ir(111) surface is investigated. Scanning tunneling spectroscopy (STS) indicates the presence of a two-dimensional electron gas with a binding energy of -160meV and an effective mass of -0.18m_e underneath single-layer graphene on the Ir(111) surface. Density functional calculations reveal that the STS features are predominantly due to a holelike surface resonance of the Ir(111) substrate. Nanometer-sized graphene islands act as local gates, which shift and confine the surface resonance.Comment: Accepted by Physical Review Letters, Feb 17, 201

    Wannier Function Approach to Realistic Coulomb Interactions in Layered Materials and Heterostructures

    Get PDF
    We introduce an approach to derive realistic Coulomb interaction terms in free standing layered materials and vertical heterostructures from ab-initio modelling of the corresponding bulk materials. To this end, we establish a combination of calculations within the framework of the constrained random phase approximation, Wannier function representation of Coulomb matrix elements within some low energy Hilbert space and continuum medium electrostatics, which we call Wannier function continuum electrostatics (WFCE). For monolayer and bilayer graphene we reproduce full ab-initio calculations of the Coulomb matrix elements within an accuracy of 0.20.2eV or better. We show that realistic Coulomb interactions in bilayer graphene can be manipulated on the eV scale by different dielectric and metallic environments. A comparison to electronic phase diagrams derived in [M. M. Scherer et al., Phys. Rev. B 85, 235408 (2012)] suggests that the electronic ground state of bilayer graphene is a layered antiferromagnet and remains surprisingly unaffected by these strong changes in the Coulomb interaction.Comment: 12 pages, 8 figure

    Interplay of screening and superconductivity in low-dimensional materials

    Full text link
    A quantitative description of Coulomb interactions is developed for two-dimensional superconducting materials, enabling us to compare intrinsic with external screening effects, such as those due to substrates. Using the example of a doped monolayer of MoS2 embedded in a tunable dielectric environment, we demonstrate that the influence of external screening is limited to a length scale, bounded from below by the effective thickness of the quasi-two-dimensional material and from above by its intrinsic screening length. As a consequence, it is found that unconventional Coulomb-driven superconductivity cannot be induced in MoS2 by tuning the substrate properties alone. Our calculations of the retarded Morel-Anderson Coulomb potential {\mu *} reveal that the Coulomb interactions, renormalized by the reduced layer thickness and the substrate properties, can shift the onset of the electron-phonon driven superconducting phase in monolayer MoS2 but do not significantly affect the critical temperature at optimal doping.Comment: 8 pages, 5 figure

    Spectral functions of isolated Ce adatoms on paramagnetic surfaces

    Full text link
    We report photoemission experiments revealing the full valence electron spectral function of Ce adatoms on Ag(111), W(110) and Rh(111) surfaces. A transfer of Ce 4f spectral weight from the ionization peak towards the Fermi level is demonstrated upon changing the substrate from Ag(111) to Rh(111). In the intermediate case of Ce on W(110) the ionization peak is found to be split. This evolution of the spectra is explained by means of first-principles theory which clearly demonstrates that a reliable understanding of magnetic adatoms on metal surfaces requires simultaneous low and high energy spectroscopic information.Comment: 4 pages, 3 figure

    Pseudodoping of Metallic Two-Dimensional Materials by The Supporting Substrates

    Get PDF
    We demonstrate how hybridization between a two-dimensional material and its substrate can lead to an apparent heavy doping, using the example of monolayer TaS2_2 grown on Au(111). Combining ab-initio\textit{ab-initio} calculations, scanning tunneling spectroscopy experiments and a generic model, we show that strong changes in Fermi areas can arise with much smaller actual charge transfer. This mechanism, which we refer to as pseudodoping, is a generic effect for metallic two-dimensional materials which are either adsorbed to metallic substrates or embedded in vertical heterostructures. It explains the apparent heavy doping of TaS2_2 on Au(111) observed in photoemission spectroscopy and spectroscopic signatures in scanning tunneling spectroscopy. Pseudodoping is associated with non-linear energy-dependent shifts of electronic spectra, which our scanning tunneling spectroscopy experiments reveal for clean and defective TaS2_2 monolayer on Au(111). The influence of pseudodoping on the formation of charge ordered, magnetic, or superconducting states is analyzed.Comment: arXiv admin note: substantial text overlap with arXiv:1609.0022
    corecore