405 research outputs found
Maternal Exposure to Aeroallergens and the Risk of Early Delivery.
BACKGROUND: Daily changes in aeroallergens during pregnancy could trigger early labor, but few investigations have evaluated this issue. This study aimed to investigate the association between exposure to aeroallergens during the week preceding birth and the risk of early delivery among preterm and term pregnancies. METHODS: We identified data on 225,234 singleton births that occurred in six large cities in the province of Ontario, Canada, from 2004 to 2011 (April to October) from a birth registry. We obtained daily counts of pollen grains and fungal spores from fixed-site monitoring stations in each city and assigned them to pregnancy period of each birth. Associations between exposure to aeroallergens in the preceding week and risk of delivery among preterm (<37 gestational weeks), early-term (37-38 weeks), and full-term (≥39 weeks) pregnancies were evaluated with Cox regression models, adjusting for maternal characteristics, meteorologic parameters, and air pollution concentrations, and pooled across the six cities. RESULTS: The risk of delivery increased by 3% per interquartile range width (IQRw = 22.1 grains/m) increase in weed pollen the day before birth among early-term (hazard ratio [HR] = 1.03; 95% confidence interval [CI]: 1.01, 1.05) and full-term pregnancies (HR = 1.03; 95% CI: 1.01, 1.04). Exposure to fungal spores cumulated over 0 to 2 lagged days was associated with increased risk of delivery among full-term pregnancies only (HR = 1.07; 95% CI: 1.01, 1.12). We observed no associations among preterm deliveries. CONCLUSIONS: Increasing concentrations of ambient weed pollen and fungal spores may be associated with earlier delivery among term births
Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter.
Exposure to ambient fine particulate matter (PM2.5) is a major global health concern. Quantitative estimates of attributable mortality are based on disease-specific hazard ratio models that incorporate risk information from multiple PM2.5 sources (outdoor and indoor air pollution from use of solid fuels and secondhand and active smoking), requiring assumptions about equivalent exposure and toxicity. We relax these contentious assumptions by constructing a PM2.5-mortality hazard ratio function based only on cohort studies of outdoor air pollution that covers the global exposure range. We modeled the shape of the association between PM2.5 and nonaccidental mortality using data from 41 cohorts from 16 countries-the Global Exposure Mortality Model (GEMM). We then constructed GEMMs for five specific causes of death examined by the global burden of disease (GBD). The GEMM predicts 8.9 million [95% confidence interval (CI): 7.5-10.3] deaths in 2015, a figure 30% larger than that predicted by the sum of deaths among the five specific causes (6.9; 95% CI: 4.9-8.5) and 120% larger than the risk function used in the GBD (4.0; 95% CI: 3.3-4.8). Differences between the GEMM and GBD risk functions are larger for a 20% reduction in concentrations, with the GEMM predicting 220% higher excess deaths. These results suggest that PM2.5 exposure may be related to additional causes of death than the five considered by the GBD and that incorporation of risk information from other, nonoutdoor, particle sources leads to underestimation of disease burden, especially at higher concentrations
The global burden of cancer 2013 global burden of disease cancer collaboration
Importance Cancer is among the leading causes of death worldwide. Current estimates of cancer burden in individual countries and regions are necessary to inform local cancer control strategies. Objective To estimate mortality, incidence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs) for 28 cancers in 188 countries by sex from 1990 to 2013. Evidence Review The general methodology of the Global Burden of Disease (GBD) 2013 study was used. Cancer registries were the source for cancer incidence data as well as mortality incidence (MI) ratios. Sources for cause of death data include vital registration system data, verbal autopsy studies, and other sources. The MI ratios were used to transform incidence data to mortality estimates and cause of death estimates to incidence estimates. Cancer prevalence was estimated using MI ratios as surrogates for survival data; YLDs were calculated by multiplying prevalence estimates with disability weights, which were derived from population-based surveys; YLLs were computed by multiplying the number of estimated cancer deaths at each age with a reference life expectancy; and DALYs were calculated as the sum of YLDs and YLLs. Findings In 2013 there were 14.9 million incident cancer cases, 8.2 million deaths, and 196.3 million DALYs. Prostate cancer was the leading cause for cancer incidence (1.4 million) for men and breast cancer for women (1.8 million). Tracheal, bronchus, and lung (TBL) cancer was the leading cause for cancer death in men and women, with 1.6 million deaths. For men, TBL cancer was the leading cause of DALYs (24.9 million). For women, breast cancer was the leading cause of DALYs (13.1 million). Age-standardized incidence rates (ASIRs) per 100 000 and age-standardized death rates (ASDRs) per 100 000 for both sexes in 2013 were higher in developing vs developed countries for stomach cancer (ASIR, 17 vs 14; ASDR, 15 vs 11), liver cancer (ASIR, 15 vs 7; ASDR, 16 vs 7), esophageal cancer (ASIR, 9 vs 4; ASDR, 9 vs 4), cervical cancer (ASIR, 8 vs 5; ASDR, 4 vs 2), lip and oral cavity cancer (ASIR, 7 vs 6; ASDR, 2 vs 2), and nasopharyngeal cancer (ASIR, 1.5 vs 0.4; ASDR, 1.2 vs 0.3). Between 1990 and 2013, ASIRs for all cancers combined (except nonmelanoma skin cancer and Kaposi sarcoma) increased by more than 10% in 113 countries and decreased by more than 10% in 12 of 188 countries. Conclusions and Relevance Cancer poses a major threat to public health worldwide, and incidence rates have increased in most countries since 1990. The trend is a particular threat to developing nations with health systems that are ill-equipped to deal with complex and expensive cancer treatments. The annual update on the Global Burden of Cancer will provide all stakeholders with timely estimates to guide policy efforts in cancer prevention, screening, treatment, and palliation
Adapting non-parametric spline representations of outdoor air pollution health effects associations for use in public health benefits assessment
The magnitude and shape of the association between outdoor air pollution concentrations and health need to be characterized in order to estimate public health benefits from proposed mitigation strategies. Specialized parametric functions have been proposed for this characterization. However, non-parametric spline models offer more flexibility, less bias, and predictive power, in describing these associations and are thus preferred over relatively simple parametric formulations. Unrestricted spline representations are often reported but many are not suitable for benefits analysis due to their erratic concentration-response behavior and are usually not presented in a format consistent with the requirements necessary to conduct a benefits analysis. We propose a method to adapt non-parametric spline representations of concentration-response associations that are suitable for public health benefits analysis by transforming spline predictions and its uncertainty over the study exposure range to a new spline formulation that is both monotonically increasing and restricted to concentration-response patterns suitable for use in health benefits assessment. We selected two examples of the association between long-term exposure to fine particulate matter and mortality in Canada and the USA that displayed spline fits that were neither monotonically increasing nor suitable, we suggest, for benefits analysis. We suggest our model is suitable for benefits analysis and conduct such analyses for both Canada and the USA, comparing benefits estimates to traditional models. Finally, we provide guidance on how to report spline fitting results such they can be used either in benefits analysis directly, or to fit our new model
Particulate oxidative burden as a predictor of exhaled nitric oxide in children with asthma
Background:
Epidemiological studies have provided strong evidence that fine particulate matter (PM2.5; aerodynamic diameter ≤ 2.5 μm) can exacerbate asthmatic symptoms in children. Pro-oxidant components of PM2.5 are capable of directly generating reactive oxygen species. Oxidative burden is used to describe the capacity of PM2.5 to generate reactive oxygen species in the lung.
Objective:
In this study we investigated the association between airway inflammation in asthmatic children and oxidative burden of PM2.5 personal exposure.
Methods:
Daily PM2.5 personal exposure samples (n = 249) of 62 asthmatic school-aged children in Montreal were collected over 10 consecutive days. The oxidative burden of PM2.5 samples was determined in vitro as the depletion of low-molecular-weight antioxidants (ascorbate and glutathione) from a synthetic model of the fluid lining the respiratory tract. Airway inflammation was measured daily as fractional exhaled nitric oxide (FeNO).
Results:
A positive association was identified between FeNO and glutathione-related oxidative burden exposure in the previous 24 hr (6.0% increase per interquartile range change in glutathione). Glutathione-related oxidative burden was further found to be positively associated with FeNO over 1-day lag and 2-day lag periods. Results further demonstrate that corticosteroid use may reduce the FeNO response to elevated glutathione-related oxidative burden exposure (no use, 15.8%; irregular use, 3.8%), whereas mold (22.1%), dust (10.6%), or fur (13.1%) allergies may increase FeNO in children with versus children without these allergies (11.5%). No association was found between PM2.5 mass or ascorbate-related oxidative burden and FeNO levels.
Conclusions:
Exposure to PM2.5 with elevated glutathione-related oxidative burden was associated with increased FeNO
Short-term exposure to ambient air pollution and individual emergency department visits for COVID-19: A case-crossover study in Canada
BACKGROUND: Ambient air pollution is thought to contribute to increased risk of COVID-19, but the evidence is controversial. OBJECTIVE: To evaluate the associations between short-term variations in outdoor concentrations of ambient air pollution and COVID-19 emergency department (ED) visits. METHODS: We conducted a case-crossover study of 78 255 COVID-19 ED visits in Alberta and Ontario, Canada between 1 March 2020 and 31 March 2021. Daily air pollution data (ie, fine particulate matter with diameter less than 2.5 µm (PM2.5), nitrogen dioxide (NO2) and ozone were assigned to individual case of COVID-19 in 10 km × 10 km grid resolution. Conditional logistic regression was used to estimate associations between air pollution and ED visits for COVID-19. RESULTS: Cumulative ambient exposure over 0-3 days to PM2.5 (OR 1.010; 95% CI 1.004 to 1.015, per 6.2 µg/m3) and NO2 (OR 1.021; 95% CI 1.015 to 1.028, per 7.7 ppb) concentrations were associated with ED visits for COVID-19. We found that the association between PM2.5 and COVID-19 ED visits was stronger among those hospitalised following an ED visit, as a measure of disease severity, (OR 1.023; 95% CI 1.015 to 1.031) compared with those not hospitalised (OR 0.992; 95% CI 0.980 to 1.004) (p value for effect modification=0.04). CONCLUSIONS: We found associations between short-term exposure to ambient air pollutants and COVID-19 ED visits. Exposure to air pollution may also lead to more severe COVID-19 disease
Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013
BACKGROUND: The Millennium Declaration in 2000 brought special global attention to HIV, tuberculosis, and malaria through the formulation of Millennium Development Goal (MDG) 6. The Global Burden of Disease 2013 study provides a consistent and comprehensive approach to disease estimation for between 1990 and 2013, and an opportunity to assess whether accelerated progress has occured since the Millennium Declaration. METHODS: To estimate incidence and mortality for HIV, we used the UNAIDS Spectrum model appropriately modified based on a systematic review of available studies of mortality with and without antiretroviral therapy (ART). For concentrated epidemics, we calibrated Spectrum models to fit vital registration data corrected for misclassification of HIV deaths. In generalised epidemics, we minimised a loss function to select epidemic curves most consistent with prevalence data and demographic data for all-cause mortality. We analysed counterfactual scenarios for HIV to assess years of life saved through prevention of mother-to-child transmission (PMTCT) and ART. For tuberculosis, we analysed vital registration and verbal autopsy data to estimate mortality using cause of death ensemble modelling. We analysed data for corrected case-notifications, expert opinions on the case-detection rate, prevalence surveys, and estimated cause-specific mortality using Bayesian meta-regression to generate consistent trends in all parameters. We analysed malaria mortality and incidence using an updated cause of death database, a systematic analysis of verbal autopsy validation studies for malaria, and recent studies (2010-13) of incidence, drug resistance, and coverage of insecticide-treated bednets. FINDINGS: Globally in 2013, there were 1·8 million new HIV infections (95% uncertainty interval 1·7 million to 2·1 million), 29·2 million prevalent HIV cases (28·1 to 31·7), and 1·3 million HIV deaths (1·3 to 1·5). At the peak of the epidemic in 2005, HIV caused 1·7 million deaths (1·6 million to 1·9 million). Concentrated epidemics in Latin America and eastern Europe are substantially smaller than previously estimated. Through interventions including PMTCT and ART, 19·1 million life-years (16·6 million to 21·5 million) have been saved, 70·3% (65·4 to 76·1) in developing countries. From 2000 to 2011, the ratio of development assistance for health for HIV to years of life saved through intervention was US$4498 in developing countries. Including in HIV-positive individuals, all-form tuberculosis incidence was 7·5 million (7·4 million to 7·7 million), prevalence was 11·9 million (11·6 million to 12·2 million), and number of deaths was 1·4 million (1·3 million to 1·5 million) in 2013. In the same year and in only individuals who were HIV-negative, all-form tuberculosis incidence was 7·1 million (6·9 million to 7·3 million), prevalence was 11·2 million (10·8 million to 11·6 million), and number of deaths was 1·3 million (1·2 million to 1·4 million). Annualised rates of change (ARC) for incidence, prevalence, and death became negative after 2000. Tuberculosis in HIV-negative individuals disproportionately occurs in men and boys (versus women and girls); 64·0% of cases (63·6 to 64·3) and 64·7% of deaths (60·8 to 70·3). Globally, malaria cases and deaths grew rapidly from 1990 reaching a peak of 232 million cases (143 million to 387 million) in 2003 and 1·2 million deaths (1·1 million to 1·4 million) in 2004. Since 2004, child deaths from malaria in sub-Saharan Africa have decreased by 31·5% (15·7 to 44·1). Outside of Africa, malaria mortality has been steadily decreasing since 1990. INTERPRETATION: Our estimates of the number of people living with HIV are 18·7% smaller than UNAIDS's estimates in 2012. The number of people living with malaria is larger than estimated by WHO. The number of people living with HIV, tuberculosis, or malaria have all decreased since 2000. At the global level, upward trends for malaria and HIV deaths have been reversed and declines in tuberculosis deaths have accelerated. 101 countries (74 of which are developing) still have increasing HIV incidence. Substantial progress since the Millennium Declaration is an encouraging sign of the effect of global action. FUNDING: Bill & Melinda Gates Foundation
Exposure to air pollution near a steel plant is associated with reduced heart rate variability: a randomised crossover study
Spatiotemporal Variations in Ambient Ultrafine Particles and the Incidence of Childhood Asthma.
Rationale: Little is known regarding the impact of ambient ultrafine particles (UFPs; <0.1 μm) on childhood asthma development. Objectives: To examine the association between prenatal and early postnatal life exposure to UFPs and development of childhood asthma. Methods: A total of 160,641 singleton live births occurring in the City of Toronto, Canada between April 1, 2006, and March 31, 2012, were identified from a birth registry. Associations between exposure to ambient air pollutants and childhood asthma incidence (up to age 6) were estimated using random effects Cox proportional hazards models, adjusting for personal- and neighborhood-level covariates. We investigated both single-pollutant and multipollutant models accounting for coexposures to particulate matter ≤2.5 μm in aerodynamic diameter (PM2.5) and NO2. Measurements and Main Results: We identified 27,062 children with incident asthma diagnosis during the follow-up. In adjusted models, second-trimester exposure to UFPs (hazard ratio per interquartile range increase, 1.09; 95% confidence interval, 1.06-1.12) was associated with asthma incidence. In models additionally adjusted for PM2.5 and nitrogen dioxide, UFPs exposure during the second trimester of pregnancy remained positively associated with childhood asthma incidence (hazard ratio per interquartile range increase, 1.05; 95% confidence interval, 1.01-1.09). Conclusions: This is the first study to evaluate the association between perinatal exposure to UFPs and the incidence of childhood asthma. Exposure to UFPs during a critical period of lung development was linked to the onset of asthma in children, independent of PM2.5 and NO2
- …
