1,240 research outputs found
Information filtering via preferential diffusion
Recommender systems have shown great potential to address information
overload problem, namely to help users in finding interesting and relevant
objects within a huge information space. Some physical dynamics, including heat
conduction process and mass or energy diffusion on networks, have recently
found applications in personalized recommendation. Most of the previous studies
focus overwhelmingly on recommendation accuracy as the only important factor,
while overlook the significance of diversity and novelty which indeed provide
the vitality of the system. In this paper, we propose a recommendation
algorithm based on the preferential diffusion process on user-object bipartite
network. Numerical analyses on two benchmark datasets, MovieLens and Netflix,
indicate that our method outperforms the state-of-the-art methods.
Specifically, it can not only provide more accurate recommendations, but also
generate more diverse and novel recommendations by accurately recommending
unpopular objects.Comment: 12 pages, 10 figures, 2 table
A Molecular Micromaser
We show that photoassociation of fermionic atoms into bosonic molecules
inside an optical lattice can be described using a Jaynes-Cummings Hamiltonian
with a nonlinear detuning. Using this equivalence to the Jaynes-Cummings
dynamics, we show how one can construct a micromaser for the molecular field in
each lattice site
Genetic Fusions of a CFA/I/II/IV MEFA (Multiepitope Fusion Antigen) and a Toxoid Fusion of Heat-Stable Toxin (STa) and Heat-Labile Toxin (LT) of Enterotoxigenic Escherichia coli (ETEC) Retain Broad Anti-CFA and Antitoxin Antigenicity
Citation: Ruan, X. S., Sack, D. A., & Zhang, W. P. (2015). Genetic Fusions of a CFA/I/II/IV MEFA (Multiepitope Fusion Antigen) and a Toxoid Fusion of Heat-Stable Toxin (STa) and Heat-Labile Toxin (LT) of Enterotoxigenic Escherichia coli (ETEC) Retain Broad Anti-CFA and Antitoxin Antigenicity. Plos One, 10(3), 20. doi:10.1371/journal.pone.0121623Immunological heterogeneity has long been the major challenge in developing broadly effective vaccines to protect humans and animals against bacterial and viral infections. Enterotoxigenic Escherichia coli (ETEC) strains, the leading bacterial cause of diarrhea in humans, express at least 23 immunologically different colonization factor antigens (CFAs) and two distinct enterotoxins [heat-labile toxin (LT) and heat-stable toxin type Ib (STa or hSTa)]. ETEC strains expressing any one or two CFAs and either toxin cause diarrhea, therefore vaccines inducing broad immunity against a majority of CFAs, if not all, and both toxins are expected to be effective against ETEC. In this study, we applied the multiepitope fusion antigen (MEFA) strategy to construct ETEC antigens and examined antigens for broad anti-CFA and antitoxin immunogenicity. CFA MEFA CFA/I/II/IV [CVI 2014, 21(2): 2439], which carried epitopes of seven CFAs [CFA/I, CFA/II (CS1, CS2, CS3), CFA/IV (CS4, CS5, CS6)] expressed by the most prevalent and virulent ETEC strains, was genetically fused to LT-STa toxoid fusion monomer 3xSTa(A14Q)-dmLT or 3xSTa(N12S)-dmLT [IAI 2014, 82(5): 1823-32] for CFA/I/II/IV-STaA14Q-dmLT and CFA/I/II/IV-STaN12S-dmLT MEFAs. Mice intraperitoneally immunized with either CFA/I/II/IV-STa-(toxoid)-dmLT MEFA developed antibodies specific to seven CFAs and both toxins, at levels equivalent or comparable to those induced from co-administration of the CFA/I/II/IV MEFA and toxoid fusion 3xSTaN12S-dmLT. Moreover, induced antibodies showed in vitro adherence inhibition activities against ETEC or E. coli strains expressing these seven CFAs and neutralization activities against both toxins. These results indicated CFA/I/II/IV-STa-(toxoid)-dmLT MEFA or CFA/I/II/IV MEFA combined with 3xSTa(N12S)-dmLT induced broadly protective anti-CFA and antitoxin immunity, suggested their potential application in broadly effective ETEC vaccine development. This MEFA strategy may be generally used in multivalent vaccine development
Phase Diagram of Rydberg atoms in a nonequilibrium optical lattice
We study the quantum nonequilibrium dynamics of ultracold three-level atoms
trapped in an optical lattice, which are excited to their Rydberg states via a
two-photon excitation with nonnegligible spontaneous emission. Rich quantum
phases including uniform phase, antiferromagnetic phase and oscillatory phase
are identified. We map out the phase diagram and find these phases can be
controlled by adjusting the ratio of intensity of the pump light to the control
light, and that of two-photon detuning to the Rydberg interaction strength.
When the two-photon detuning is blue-shifted and the latter ratio is less than
1, bistability exists among the phases. Actually, this ratio controls the
Rydberg-blockade and antiblockade effect, thus the phase transition in this
system can be considered as a possible approach to study both effects.Comment: 5 pages,5 figure
Atom optical elements for Bose condensates
A simple model for atom optical elements for Bose condensate of trapped,
dilute alkali atomns is proposed and numerical simulations are presented to
illustrate its characteristics. We demonstrate ways of focusing and splitting
the condensate by modifying experimentally adjustable parameters. We show that
there are at least two ways of implementing atom optical elements: one may
modulate the interatomic scattering length in space, or alternatively, use a
sinusoidal, externally applied potential.Comment: 7 pages, 10 figure
Aptamer photoregulation in vivo
The in vivo application of aptamers as therapeutics could be improved by enhancing target-specific accumulation while minimizing off-target uptake. We designed a light-triggered system that permits spatiotemporal regulation of aptamer activity in vitro and in vivo. Cell binding by the aptamer was prevented by hybridizing the aptamer to a photo-labile complementary oligonucleotide. Upon irradiation at the tumor site, the aptamer was liberated, leading to prolonged intratumoral retention. The relative distribution of the aptamer to the liver and kidney was also significantly decreased, compared to that of the free aptamer.National Institutes of Health (U.S.) (Grant GM073626
Creation of Skyrmions in a Spinor Bose-Einstein Condensate
We propose a scheme for the creation of skyrmions (coreless vortices) in a
Bose-Einstein condensate with hyperfine spin F=1. In this scheme, four
traveling-wave laser beams, with Gaussian or Laguerre-Gaussian transverse
profiles, induce Raman transitions with an anomalous dependence on the laser
polarization, thereby generating the optical potential required for producing
skyrmions.Comment: 5 pages, 2 figures, RevTe
Weighted Bergman kernels and virtual Bergman kernels
We introduce the notion of "virtual Bergman kernel" and apply it to the
computation of the Bergman kernel of "domains inflated by Hermitian balls", in
particular when the base domain is a bounded symmetric domain.Comment: 12 pages. One-hour lecture for graduate students, SCV 2004, August
2004, Beijing, P.R. China. V2: typo correcte
Quantum optics of a Bose-Einstein condensate coupled to a quantized light field
We consider the interaction between a Bose-Einstein condensate and a
single-mode quantized light field in the presence of a strong far off-resonant
pump laser. The dynamics is characterized by an exponential instability, hence
the system acts as an atom-photon parametric amplifier. Triggered by a small
injected probe field, or simply by quantum noise, entangled atom-photon pairs
are created which exhibit non-classical correlations similar to those seen
between photons in the optical parametric amplifier. In addition, the quantum
statistics of the matter and light fields depend strongly on the initial state
which triggers the amplifier. Thus by preparing different initial states of the
light field, one can generate matter waves in a variety of quantum states,
demonstrating optical control over the quantum statistics of matter waves
- …
