1,143 research outputs found

    Progress in aeroelastic optimization - Analytical versus numerical approaches

    Get PDF
    Mathematical and structural analysis for optimal control of aeroelasticity in unswept wing

    Quadrupole collectivity beyond N=28: Intermediate-energy Coulomb excitation of 47,48Ar

    Full text link
    We report on the first experimental study of quadrupole collectivity in the very neutron-rich nuclei \nuc{47,48}{Ar} using intermediate-energy Coulomb excitation. These nuclei are located along the path from doubly-magic Ca to collective S and Si isotopes, a critical region of shell evolution and structural change. The deduced B(E2)B(E2) transition strengths are confronted with large-scale shell-model calculations in the sdpfsdpf shell using the state-of-the-art SDPF-U and EPQQM effective interactions. The comparison between experiment and theory indicates that a shell-model description of Ar isotopes around N=28 remains a challenge.Comment: Accepted for publication in Physical Review Letters, typos fixed in resubmission on April 1

    Quadrupole collectivity in neutron-deficient Sn nuclei: \nuc{104}{Sn} and the role of proton excitations

    Full text link
    We report on the experimental study of quadrupole collectivity in the neutron-deficient nucleus \nuc{104}{Sn} using intermediate-energy Coulomb excitation. The B(E2;01+21+)B(E2; 0^+_1 \rightarrow 2^+_1) value for the excitation of the first 2+2^+ state in \nuc{104}{Sn} has been measured to be 0.180(37) e20.180(37)~e^2b2^2 relative to the well-known B(E2)B(E2) value of \nuc{102}{Cd}. This result disagrees by more than one sigma with a recently published measurement \cite{Gua13}. Our result indicates that the most modern many-body calculations remain unable to describe the enhanced collectivity below mid-shell in Sn approaching N=Z=50N=Z=50. We attribute the enhanced collectivity to proton particle-hole configurations beyond the necessarily limited shell-model spaces and suggest the asymmetry of the B(E2)B(E2)-value trend around mid-shell to originate from enhanced proton excitations across Z=50Z=50 as N=ZN=Z is approached.Comment: Accepted for publication as rapid communication in Physical Review

    Observation of mutually enhanced collectivity in self-conjugate 3876^{76}_{38}Sr38_{38}

    Full text link
    The lifetimes of the first 2+^{+} states in the neutron-deficient 76,78^{76,78}Sr isotopes were measured using a unique combination of the γ\gamma-ray line-shape method and two-step nucleon exchange reactions at intermediate energies. The transition rates for the 2+^{+} states were determined to be BB(E2;2+^{+}0+\to 0^{+}) = 2220(270) e2^{2}fm4^{4} for 76^{76}Sr and 1800(250) e2^{2}fm4^{4} for 78^{78}Sr, corresponding to large deformation of β2\beta_2 = 0.45(3) for 76^{76}Sr and 0.40(3) for 78^{78}Sr. The present data provide experimental evidence for mutually enhanced collectivity that occurs at NN = ZZ = 38. The systematic behavior of the excitation energies and BB(E2) values indicates a signature of shape coexistence in 76^{76}Sr, characterizing 76^{76}Sr as one of most deformed nuclei with an unusually reduced EE(4+^{+})/EE(2+^{+}) ratio.Comment: Accepted for publication in Physical Review C Rapid Communicatio

    Spectroscopy of neutron-unbound 27,28^{27,28}F

    Full text link
    The ground state of 28^{28}F has been observed as an unbound resonance 2202\underline{2}0 keV above the ground state of 27^{27}F. Comparison of this result with USDA/USDB shell model predictions leads to the conclusion that the 28^{28}F ground state is primarily dominated by sdsd-shell configurations. Here we present a detailed report on the experiment in which the ground state resonance of 28^{28}F was first observed. Additionally, we report the first observation of a neutron-unbound excited state in 27^{27}F at an excitation energy of 2500(220)25\underline{0}0 (2\underline{2}0) keV.Comment: 10 pages, 11 figures, Accepted for publication in Phys. Rev.

    Mirror Energy Differences at Large Isospin Studied through Direct Two-Nucleon Knockout

    Get PDF
    The first spectroscopy of excited states in 52Ni (Tz=2) and 51Co (Tz=-3/2) has been obtained using the highly selective two-neutron knockout reaction. Mirror energy differences between isobaric analogue states in these nuclei and their mirror partners are interpreted in terms of isospin nonconserving effects. A comparison between large scale shell-model calculations and data provides the most compelling evidence to date that both electromagnetic and an additional isospin nonconserving interactions for J=2 couplings, of unknown origin, are required to obtain good agreement.Comment: Accepted for publication in Physical Review Letter

    In-beam gamma-ray spectroscopy of 35Mg and 33Na

    Full text link
    Excited states in the very neutron-rich nuclei 35Mg and 33Na were populated in the fragmentation of a 38Si projectile beam on a Be target at 83 MeV/u beam energy. We report on the first observation of gamma-ray transitions in 35Mg, the odd-N neighbor of 34Mg and 36Mg, which are known to be part of the "Island of Inversion" around N = 20. The results are discussed in the framework of large- scale shell-model calculations. For the A = 3Z nucleus 33Na, a new gamma-ray transition was observed that is suggested to complete the gamma-ray cascade 7/2+ --> 5/2+ --> 3/2+ gs connecting three neutron 2p-2h intruder states that are predicted to form a close-to-ideal K = 3/2 rotational band in the strong-coupling limit.Comment: Accepted for publication Phys. Rev. C. March 16, 2011: Replaced figures 3 and 5. We thank Alfredo Poves for pointing out a problem with the two figure

    Spectroscopy of 54^{54}Ti and the systematic behavior of low energy octupole states in Ca and Ti isotopes

    Full text link
    Excited states of the N=32N=32 nucleus 54^{54}Ti have been studied, via both inverse-kinematics proton scattering and one-neutron knockout from 55^{55}Ti by a liquid hydrogen target, using the GRETINA γ\gamma-ray tracking array. Inelastic proton-scattering cross sections and deformation lengths have been determined. A low-lying octupole state has been tentatively identified in 54^{54}Ti for the first time. A comparison of (p,p)(p,p') results on low-energy octupole states in the neutron-rich Ca and Ti isotopes with the results of Random Phase Approximation calculations demonstrates that the observed systematic behavior of these states is unexpected.Comment: 7 pages, 8 figure
    corecore