104 research outputs found

    Culture and Hybridization Experiments on an Ulva Clade Including the Qingdao Strain Blooming in the Yellow Sea

    Get PDF
    In the summer of 2008, immediately prior to the Beijing Olympics, a massive green tide of the genus Ulva covered the Qingdao coast of the Yellow Sea in China. Based on molecular analyses using the nuclear encoded rDNA internal transcribed spacer (ITS) region, the Qingdao strains dominating the green tide were reported to be included in a single phylogenetic clade, currently regarded as a single species. On the other hand, our detailed phylogenetic analyses of the clade, using a higher resolution DNA marker, suggested that two genetically separate entities could be included within the clade. However, speciation within the Ulva clade has not yet been examined. We examined the occurrence of an intricate speciation within the clade, including the Qingdao strains, via combined studies of culture, hybridization and phylogenetic analysis. The two entities separated by our phylogenetic analyses of the clade were simply distinguished as U. linza and U. prolifera morphologically by the absence or presence of branches in cultured thalli. The inclusion of sexual strains and several asexual strains were found in each taxon. Hybridizations among the sexual strains also supported the separation by a partial gamete incompatibility. The sexually reproducing Qingdao strains crossed with U. prolifera without any reproductive boundary, but a complete reproductive isolation to U. linza occurred by gamete incompatibility. The results demonstrate that the U. prolifera group includes two types of sexual strains distinguishable by crossing affinity to U. linza. Species identification within the Ulva clade requires high resolution DNA markers and/or hybridization experiments and is not possible by reliance on the ITS markers alone

    Coverage Modeling and Analysis for Outdoor THz Networks With Blockage and Molecular Absorption

    Full text link

    Biocompatibility of boron nitride nanosheets

    Full text link
    The properties and applications of boron nitride (BN) nanosheets are complementary to those of graphene, with advantages in chemical and thermal stability. Biocompatibility is an important property for future biomedical applications but has not been investigated experimentally. We studied the biocompatibility of BN nanosheets of different sizes and compared it with that of BN nanoparticles in osteoblast-like cells (SaOS2). Our results showed that the biocompatibility of BN nanomaterials depends on their size, shape, structure, and surface chemical properties. Electron spin resonance measurement revealed that unsaturated B atoms located at the nanosheet edges or on the particle surface are responsible for the cell death

    Probing the tunable surface chemistry of graphene oxide

    Full text link
    The determination of oxygen content, hydrophobicity and reduction efficiency of graphene oxide (GO) are difficult tasks because of its heterogeneous structure. Herein, we describe a novel approach for the detailed understanding of the surface chemistry of GO by studying the interactions between [Ru(bpy)3](2+) and GO
    corecore