1,918 research outputs found

    Properties of KCo2_2As2_2 and Alloys with Fe and Ru: Density Functional Calculations

    Full text link
    Electronic structure calculations are presented for KCo2_2As2_2 and alloys with KFe2_2As2_2 and KRu2_2As2_2. These materials show electronic structures characteristic of coherent alloys, with a similar Fermi surface structure to that of the Fe-based superconductors, when the dd electron count is near six per transition metal. However, they are less magnetic than the corresponding Fe compounds. These results are discussed in relation to superconductivity.Comment: 5 page

    From Few to Many: Observing the Formation of a Fermi Sea One Atom at a Time

    Full text link
    Knowing when a physical system has reached sufficient size for its macroscopic properties to be well described by many-body theory is difficult. We investigate the crossover from few to many-body physics by studying quasi one-dimensional systems of ultracold atoms consisting of a single impurity interacting with an increasing number of identical fermions. We measure the interaction energy of such a system as a function of the number of majority atoms for different strengths of the interparticle interaction. As we increase the number of majority atoms one by one we observe the fast convergence of the normalized interaction energy towards a many-body limit calculated for a single impurity immersed in a Fermi sea of majority particles.Comment: 9 pages, 5 figure

    Pairing in few-fermion systems with attractive interactions

    Full text link
    We have studied quasi one-dimensional few-particle systems consisting of one to six ultracold fermionic atoms in two different spin states with attractive interactions. We probe the system by deforming the trapping potential and by observing the tunneling of particles out of the trap. For even particle numbers we observe a tunneling behavior which deviates from uncorrelated single-particle tunneling indicating the existence of pair correlations in the system. From the tunneling timescales we infer the differences in interaction energies of systems with different number of particles which show a strong odd-even effect, similar to the one observed for neutron separation experiments in nuclei.Comment: 9 pages, 6 figure

    An experiment to detect gravity at sub-mm scale with high-Q mechanical oscillators

    Full text link
    Silicon double paddle oscillators are well suited for the detection of weak forces because of their high Q factor (about 10^5 at room temperature). We describe an experiment aimed at the detection of gravitational forces between masses at sub-mm distance using such an oscillator. Gravitational excitation is produced by a rotating aluminium disk with platinum segments. The force sensitivity of this apparatus is about 10 fN at room temperature for 1000 s averaging time at room temperature. The current limitations to detection of the gravitational force are mentioned.Comment: 19 pages, to appear in Proceedings of the Tenth Marcel Grossmann Meeting on General Relativity, edited by M. Novello, S. Perez-Bergliaffa and R. Ruffini, World Scientific. Revision: portable format and revised figure

    Coherent molecule formation in anharmonic potentials near confinement-induced resonances

    Full text link
    We perform a theoretical and experimental study of a system of two ultracold atoms with tunable interaction in an elongated trapping potential. We show that the coupling of center-of-mass and relative motion due to an anharmonicity of the trapping potential leads to a coherent coupling of a state of an unbound atom pair and a molecule with a center of mass excitation. By performing the experiment with exactly two particles we exclude three-body losses and can therefore directly observe coherent molecule formation. We find quantitative agreement between our theory of inelastic confinement-induced resonances and the experimental results. This shows that the effects of center-of-mass to relative motion coupling can have a significant impact on the physics of quasi-1D quantum systems.Comment: 7 pages, 4 figure

    Quick X-ray microtomography using a laser-driven betatron source

    Full text link
    Laser-driven X-ray sources are an emerging alternative to conventional X-ray tubes and synchrotron sources. We present results on microtomographic X-ray imaging of a cancellous human bone sample using synchrotron-like betatron radiation. The source is driven by a 100-TW-class titanium-sapphire laser system and delivers over 10810^8 X-ray photons per second. Compared to earlier studies, the acquisition time for an entire tomographic dataset has been reduced by more than an order of magnitude. Additionally, the reconstruction quality benefits from the use of statistical iterative reconstruction techniques. Depending on the desired resolution, tomographies are thereby acquired within minutes, which is an important milestone towards real-life applications of laser-plasma X-ray sources

    Research towards high-repetition rate laser-driven X-ray sources for imaging applications

    Full text link
    Laser wakefield acceleration of electrons represents a basis for several types of novel X-ray sources based on Thomson scattering or betatron radiation. The latter provides a high photon flux and a small source size, both being prerequisites for high-quality X-ray imaging. Furthermore, proof-of-principle experiments have demonstrated its application for tomographic imaging. So far this required several hours of acquisition time for a complete tomographic data set. Based on improvements to the laser system, detectors and reconstruction algorithms, we were able to reduce this time for a full tomographic scan to 3 minutes. In this paper, we discuss these results and give a prospect to future imaging systems

    Fermionization of two distinguishable fermions

    Full text link
    In this work we study a system of two distinguishable fermions in a 1D harmonic potential. This system has the exceptional property that there is an analytic solution for arbitrary values of the interparticle interaction. We tune the interaction strength via a magnetic offset field and compare the measured properties of the system to the theoretical prediction. At the point where the interaction strength diverges, the energy and square of the wave function for two distinguishable particles are the same as for a system of two identical fermions. This is referred to as fermionization. We have observed this phenomenon by directly comparing two distinguishable fermions with diverging interaction strength with two identical fermions in the same potential. We observe good agreement between experiment and theory. By adding one or more particles our system can be used as a quantum simulator for more complex few-body systems where no theoretical solution is available
    corecore