1,918 research outputs found
Properties of KCoAs and Alloys with Fe and Ru: Density Functional Calculations
Electronic structure calculations are presented for KCoAs and alloys
with KFeAs and KRuAs. These materials show electronic
structures characteristic of coherent alloys, with a similar Fermi surface
structure to that of the Fe-based superconductors, when the electron count
is near six per transition metal. However, they are less magnetic than the
corresponding Fe compounds. These results are discussed in relation to
superconductivity.Comment: 5 page
From Few to Many: Observing the Formation of a Fermi Sea One Atom at a Time
Knowing when a physical system has reached sufficient size for its
macroscopic properties to be well described by many-body theory is difficult.
We investigate the crossover from few to many-body physics by studying quasi
one-dimensional systems of ultracold atoms consisting of a single impurity
interacting with an increasing number of identical fermions. We measure the
interaction energy of such a system as a function of the number of majority
atoms for different strengths of the interparticle interaction. As we increase
the number of majority atoms one by one we observe the fast convergence of the
normalized interaction energy towards a many-body limit calculated for a single
impurity immersed in a Fermi sea of majority particles.Comment: 9 pages, 5 figure
Pairing in few-fermion systems with attractive interactions
We have studied quasi one-dimensional few-particle systems consisting of one
to six ultracold fermionic atoms in two different spin states with attractive
interactions. We probe the system by deforming the trapping potential and by
observing the tunneling of particles out of the trap. For even particle numbers
we observe a tunneling behavior which deviates from uncorrelated
single-particle tunneling indicating the existence of pair correlations in the
system. From the tunneling timescales we infer the differences in interaction
energies of systems with different number of particles which show a strong
odd-even effect, similar to the one observed for neutron separation experiments
in nuclei.Comment: 9 pages, 6 figure
An experiment to detect gravity at sub-mm scale with high-Q mechanical oscillators
Silicon double paddle oscillators are well suited for the detection of weak
forces because of their high Q factor (about 10^5 at room temperature). We
describe an experiment aimed at the detection of gravitational forces between
masses at sub-mm distance using such an oscillator. Gravitational excitation is
produced by a rotating aluminium disk with platinum segments. The force
sensitivity of this apparatus is about 10 fN at room temperature for 1000 s
averaging time at room temperature. The current limitations to detection of the
gravitational force are mentioned.Comment: 19 pages, to appear in Proceedings of the Tenth Marcel Grossmann
Meeting on General Relativity, edited by M. Novello, S. Perez-Bergliaffa and
R. Ruffini, World Scientific. Revision: portable format and revised figure
Coherent molecule formation in anharmonic potentials near confinement-induced resonances
We perform a theoretical and experimental study of a system of two ultracold
atoms with tunable interaction in an elongated trapping potential. We show that
the coupling of center-of-mass and relative motion due to an anharmonicity of
the trapping potential leads to a coherent coupling of a state of an unbound
atom pair and a molecule with a center of mass excitation. By performing the
experiment with exactly two particles we exclude three-body losses and can
therefore directly observe coherent molecule formation. We find quantitative
agreement between our theory of inelastic confinement-induced resonances and
the experimental results. This shows that the effects of center-of-mass to
relative motion coupling can have a significant impact on the physics of
quasi-1D quantum systems.Comment: 7 pages, 4 figure
Quick X-ray microtomography using a laser-driven betatron source
Laser-driven X-ray sources are an emerging alternative to conventional X-ray
tubes and synchrotron sources. We present results on microtomographic X-ray
imaging of a cancellous human bone sample using synchrotron-like betatron
radiation. The source is driven by a 100-TW-class titanium-sapphire laser
system and delivers over X-ray photons per second. Compared to earlier
studies, the acquisition time for an entire tomographic dataset has been
reduced by more than an order of magnitude. Additionally, the reconstruction
quality benefits from the use of statistical iterative reconstruction
techniques. Depending on the desired resolution, tomographies are thereby
acquired within minutes, which is an important milestone towards real-life
applications of laser-plasma X-ray sources
Research towards high-repetition rate laser-driven X-ray sources for imaging applications
Laser wakefield acceleration of electrons represents a basis for several
types of novel X-ray sources based on Thomson scattering or betatron radiation.
The latter provides a high photon flux and a small source size, both being
prerequisites for high-quality X-ray imaging. Furthermore, proof-of-principle
experiments have demonstrated its application for tomographic imaging. So far
this required several hours of acquisition time for a complete tomographic data
set. Based on improvements to the laser system, detectors and reconstruction
algorithms, we were able to reduce this time for a full tomographic scan to 3
minutes. In this paper, we discuss these results and give a prospect to future
imaging systems
Fermionization of two distinguishable fermions
In this work we study a system of two distinguishable fermions in a 1D
harmonic potential. This system has the exceptional property that there is an
analytic solution for arbitrary values of the interparticle interaction. We
tune the interaction strength via a magnetic offset field and compare the
measured properties of the system to the theoretical prediction. At the point
where the interaction strength diverges, the energy and square of the wave
function for two distinguishable particles are the same as for a system of two
identical fermions. This is referred to as fermionization. We have observed
this phenomenon by directly comparing two distinguishable fermions with
diverging interaction strength with two identical fermions in the same
potential. We observe good agreement between experiment and theory. By adding
one or more particles our system can be used as a quantum simulator for more
complex few-body systems where no theoretical solution is available
- …
