1,563 research outputs found
Probing Yukawa Unification with K and B Mixing
We consider corrections to the unification of down-quark and charged-lepton
Yukawa couplings in supersymmetric GUTs, which links the large nu_tau-nu_mu
mixing angle to b -> s transitions. These corrections generically occur in
simple grand-unified models with small Higgs representations and affect s -> d
and b -> d transitions via the mixing of the corresponding right-handed
superpartners. On the basis of a specific SUSY-SO(10) model, we analyze the
constraints from K-Kbar and B-Bbar mixing on the additional
\tilde{d}_R-\tilde{s}_R rotation angle theta. We find that epsilon_K already
sets a stringent bound on theta, theta^{max}=O(1 degree), indicating a very
specific flavor structure of the correction operators. The impact of the large
neutrino mixings on the unitarity triangle analysis is also briefly discussed,
as well as their ability to account for the sizeable CP-violating phase
observed recently in B_s -> psi phi decays.Comment: 19 pages. Discussion in Sec. 5.2 slightly extended; minor numerical
modifications in Secs. 5.1 to 5.4, conclusions unchanged. Version to appear
in JHE
Rare B decays and Tevatron top-pair asymmetry
The recent Tevatron result on the top quark forward-backward asymmetry, which
deviates from its standard model prediction by 3.4, has prompted many
authors to build new models to account for this anomaly. Among the various
proposals, we find that those mechanisms which produce via - or
-channel can have a strong correlation to the rare B decays. We demonstrate
this link by studying a model with a new charged gauge boson, . In terms of
the current measurements on decays, we conclude that the branching
ratio for is affected most by the new effects.
Furthermore, using the world average branching ratio for the exclusive B decays
at level, we discuss the allowed values for the new parameters.
Finally, we point out that the influence of the new physics effects on the
direct CP asymmetry in B decays is insignificant.Comment: 15 page, 6 figures, typos corrected and references added, final
version to appear journa
A distributed stream temperature model using high resolution temperature observations
International audienceDistributed temperature data are used as input and as calibration data for an energy based temperature model of a first order stream in Luxembourg. A DTS (Distributed Temperature Sensing) system with a fiber optic cable of 1500 m was used to measure stream water temperature with 1 m resolution each 2 min. Four groundwater inflows were identified and quantified (both temperature and relative discharge). The temperature model calculates the total energy balance including solar radiation (with shading effects), longwave radiation, latent heat, sensible heat and river bed conduction. The simulated temperature is compared with the observed temperature at all points along the stream. Knowledge of the lateral inflow appears to be crucial to simulate the temperature distribution and conversely, that stream temperature can be used successfully to identify sources of lateral inflow. The DTS fiber optic is an excellent tool to provide this knowledge
Phase-Locked Spatial Domains and Bloch Domain Walls in Type-II Optical Parametric Oscillators
We study the role of transverse spatial degrees of freedom in the dynamics of
signal-idler phase locked states in type-II Optical Parametric Oscillators.
Phase locking stems from signal-idler polarization coupling which arises if the
cavity birefringence and/or dichroism is not matched to the nonlinear crystal
birefringence. Spontaneous Bloch domain wall formation is theoretically
predicted and numerically studied. Bloch walls connect, by means of a
polarization transformation, homogeneous regions of self-phase locked
solutions. The parameter range for their existence is analytically found. The
polarization properties and the dynamics of walls in one- and two transverse
spatial dimensions is explained. Transition from Bloch to Ising walls is
characterized, the control parameter being the linear coupling strength. Wall
dynamics governs spatiotemporal dynamical states of the system, which include
transient curvature driven domain growth, persistent dynamics dominated by
spiraling defects for Bloch walls, and labyrinthine pattern formation for Ising
walls.Comment: 27 pages, 16 figure
Virtual signatures of dark sectors in Higgs couplings
Where collider searches for resonant invisible particles loose steam, dark
sectors might leave their trace as virtual effects in precision observables.
Here we explore this option in the framework of Higgs portal models, where a
sector of dark fermions interacts with the standard model through a strong
renormalizable coupling to the Higgs boson. We show that precise measurements
of Higgs-gauge and triple Higgs interactions can probe dark fermions up to the
TeV scale through virtual corrections. Observation prospects at the LHC and
future lepton colliders are discussed for the so-called singlet-doublet model
of Majorana fermions, a generalization of the bino-higgsino scenario in
supersymmetry. We advocate a two-fold search strategy for dark sectors through
direct and indirect observables.Comment: 20 pages, 7 figures, 1 tabl
3D flow in the venom channel of a spitting cobra: do the ridges in the fangs act as fluid guide vanes?
The spitting cobra Naja pallida can eject its venom towards an offender from a distance of up to two meters. The aim of this study was to understand the mechanisms responsible for the relatively large distance covered by the venom jet although the venom channel is only of micro-scale. Therefore, we analysed factors that influence secondary flow and pressure drop in the venom channel, which include the physical-chemical properties of venom liquid and the morphology of the venom channel. The cobra venom showed shear-reducing properties and the venom channel had paired ridges that span from the last third of the channel to its distal end, terminating laterally and in close proximity to the discharge orifice. To analyze the functional significance of these ridges we generated a numerical and an experimental model of the venom channel. Computational fluid dynamics (CFD) and Particle-Image Velocimetry (PIV) revealed that the paired interior ridges shape the flow structure upstream of the sharp 90° bend at the distal end. The occurrence of secondary flow structures resembling Dean-type vortical structures in the venom channel can be observed, which induce additional pressure loss. Comparing a venom channel featuring ridges with an identical channel featuring no ridges, one can observe a reduction of pressure loss of about 30%. Therefore it is concluded that the function of the ridges is similar to guide vanes used by engineers to reduce pressure loss in curved flow channels
Invited review: Nutritional and management factors that influence colostrum production and composition in dairy cows
Colostrum is a rich source of nutritional and non-nutritional components and is recognized as essential to transfer passive immunity to newborn calves. Because of the individual and seasonal variability in colostrum yield and composition, maintaining an adequate supply of high-quality colostrum year-round remains a challenge for commercial dairy producers. In this narrative review, we described the individual, seasonal, and herd-level variability of colostrum production and summarized the association between individual animal factors such as parity, sex of the calf, calf birth weight, as well as indicators of the cow's metabolic status and the yield and composition of colostrum. Further, we reviewed the current knowledge on the influence of prepartum nutrition and management strategies on colostrum production. Research on the metabolizable energy and protein supplied in the prepartum diet as well as on the inclusion and source of vitamins, minerals, and feed additives suggests prepartum nutrition influences the yield, quality, and composition of colostrum. Furthermore, the prepartum environment and dry period length remain influential factors in the production of colostrum. However, additional research is needed to understand the mechanisms by which prepartum nutrition and management affect colostrum production. Finally, time from calving to colostrum harvest and oxytocin administration as well as the current knowledge on the effect of heat treatment and colostrum storage strategies on colostral components were discussed. To conclude, we identify critical gaps in knowledge for future focus of investigation in colostrum research
Collider-independent t tbar forward-backward asymmetries
We introduce the forward-backward asymmetries A_u, A_d corresponding to u
ubar, d dbar -> t tbar production, respectively, at hadron colliders. These are
collider- and center-of-mass-independent observables, directly related to the
forward-backward and charge asymmetries measured at the Tevatron and the LHC,
respectively. We discuss how to extract these asymmetries from data. Because
these asymmetries are collider-independent, their measurement at these two
colliders could elucidate the nature of the anomalous forward-backward
asymmetry measured at the Tevatron. Our framework also shows in a
model-independent fashion that a positive Tevatron asymmetry exceeding the
standard model expectation is compatible with the small asymmetry measured at
the LHC.Comment: RevTeX 5 pages. Extended discussion about A_FB vs A_C, several
clarifications, references added. Version to appear in PR
- …
