4,239 research outputs found

    Semi-analytical model for nonlinear light propagation in strongly interacting Rydberg gases

    Full text link
    Rate equation models are extensively used to describe the many-body states of laser driven atomic gases. We show that the properties of the rate equation model used to describe nonlinear optical effects arising in interacting Rydberg gases can be understood by considering the excitation of individual super-atoms. From this we deduce a simple semi-analytic model that accurately describes the Rydberg density and optical susceptibility for different dimensionalities. We identify the previously reported universal dependence of the susceptibility on the Rydberg excited fraction as an intrinsic property of the rate equation model that is rooted in one-body properties. Benchmarking against exact master equation calculations, we identify regimes in which the semi-analytic model is particularly reliable. The performance of the model improves in the presence of dephasing which destroys higher order atomic coherences.Comment: 7 pages, 4 figure

    Effects of Epistasis and Pleiotropy on Fitness Landscapes

    Full text link
    The factors that influence genetic architecture shape the structure of the fitness landscape, and therefore play a large role in the evolutionary dynamics. Here the NK model is used to investigate how epistasis and pleiotropy -- key components of genetic architecture -- affect the structure of the fitness landscape, and how they affect the ability of evolving populations to adapt despite the difficulty of crossing valleys present in rugged landscapes. Populations are seen to make use of epistatic interactions and pleiotropy to attain higher fitness, and are not inhibited by the fact that valleys have to be crossed to reach peaks of higher fitness.Comment: 10 pages, 6 figures. To appear in "Origin of Life and Evolutionary Mechanisms" (P. Pontarotti, ed.). Evolutionary Biology: 16th Meeting 2012, Springer-Verla

    Correlated Exciton Transport in Rydberg-Dressed-Atom Spin Chains

    Full text link
    We investigate the transport of excitations through a chain of atoms with non-local dissipation introduced through coupling to additional short-lived states. The system is described by an effective spin-1/2 model where the ratio of the exchange interaction strength to the reservoir coupling strength determines the type of transport, including coherent exciton motion, incoherent hopping and a regime in which an emergent length scale leads to a preferred hopping distance far beyond nearest neighbors. For multiple impurities, the dissipation gives rise to strong nearest-neighbor correlations and entanglement. These results highlight the importance of non-trivial dissipation, correlations and many-body effects in recent experiments on the dipole-mediated transport of Rydberg excitations.Comment: 5 page

    Quantum simulation of energy transport with embedded Rydberg aggregates

    Full text link
    We show that an array of ultracold Rydberg atoms embedded in a laser driven background gas can serve as an aggregate for simulating exciton dynamics and energy transport with a controlled environment. Spatial disorder and decoherence introduced by the interaction with the background gas atoms can be controlled by the laser parameters. This allows for an almost ideal realization of a Haken-Reineker-Strobl type model for energy transport. Physics can be monitored using the same mechanism that provides control over the environment. The degree of decoherence is traced back to information gained on the excitation location through the monitoring, turning the setup into an experimentally accessible model system for studying the effects of quantum measurements on the dynamics of a many-body quantum system.Comment: 5 pages, 4 figures, 3 pages supp. in

    Condensate splitting in an asymmetric double well for atom chip based sensors

    Full text link
    We report on the adiabatic splitting of a BEC of 87^{87}Rb atoms by an asymmetric double-well potential located above the edge of a perpendicularly magnetized TbGdFeCo film atom chip. By controlling the barrier height and double-well asymmetry the sensitivity of the axial splitting process is investigated through observation of the fractional atom distribution between the left and right wells. This process constitutes a novel sensor for which we infer a single shot sensitivity to gravity fields of δg/g2×104\delta g/g\approx2\times10^{-4}. From a simple analytic model we propose improvements to chip-based gravity detectors using this demonstrated methodology.Comment: 4 pages, 5 figure

    Creation of collective many-body states and single photons from two-dimensional Rydberg lattice gases

    Full text link
    The creation of collective many-body quantum states from a two-dimensional lattice gas of atoms is studied. Our approach relies on the van-der-Waals interaction that is present between alkali metal atoms when laser excited to high-lying Rydberg s-states. We focus on a regime in which the laser driving is strong compared to the interaction between Rydberg atoms. Here energetically low-lying many-particle states can be calculated approximately from a quadratic Hamiltonian. The potential usefulness of these states as a resource for the creation of deterministic single-photon sources is illustrated. The properties of these photon states are determined from the interplay between the particular geometry of the lattice and the interatomic spacing.Comment: 12 pages, 8 figure
    corecore