2,685 research outputs found
Formal Verification of Neural Network Controlled Autonomous Systems
In this paper, we consider the problem of formally verifying the safety of an
autonomous robot equipped with a Neural Network (NN) controller that processes
LiDAR images to produce control actions. Given a workspace that is
characterized by a set of polytopic obstacles, our objective is to compute the
set of safe initial conditions such that a robot trajectory starting from these
initial conditions is guaranteed to avoid the obstacles. Our approach is to
construct a finite state abstraction of the system and use standard
reachability analysis over the finite state abstraction to compute the set of
the safe initial states. The first technical problem in computing the finite
state abstraction is to mathematically model the imaging function that maps the
robot position to the LiDAR image. To that end, we introduce the notion of
imaging-adapted sets as partitions of the workspace in which the imaging
function is guaranteed to be affine. We develop a polynomial-time algorithm to
partition the workspace into imaging-adapted sets along with computing the
corresponding affine imaging functions. Given this workspace partitioning, a
discrete-time linear dynamics of the robot, and a pre-trained NN controller
with Rectified Linear Unit (ReLU) nonlinearity, the second technical challenge
is to analyze the behavior of the neural network. To that end, we utilize a
Satisfiability Modulo Convex (SMC) encoding to enumerate all the possible
segments of different ReLUs. SMC solvers then use a Boolean satisfiability
solver and a convex programming solver and decompose the problem into smaller
subproblems. To accelerate this process, we develop a pre-processing algorithm
that could rapidly prune the space feasible ReLU segments. Finally, we
demonstrate the efficiency of the proposed algorithms using numerical
simulations with increasing complexity of the neural network controller
Xeroderma Pigmentosum Group C Deficiency Alters Cigarette Smoke DNA Damage Cell Fate and Accelerates Emphysema Development
Cigarette smoke (CS) exposure is a major risk factor for the development of emphysema, a common disease characterized by loss of cells comprising the lung parenchyma. The mechanisms of cell injury leading to emphysema are not completely understood but are thought to involve persistent cytotoxic or mutagenic DNA damage induced by CS. Using complementary cell culture and mouse models of CS exposure, we investigated the role of the DNA repair protein, xeroderma pigmentosum group C (XPC), on CS-induced DNA damage repair and emphysema. Expression of XPC was decreased in mouse lungs after chronic CS exposure and XPC knockdown in cultured human lung epithelial cells decreased their survival after CS exposure due to activation of the intrinsic apoptosis pathway. Similarly, cell autophagy and apoptosis were increased in XPC-deficient mouse lungs and were further increased by CS exposure. XPC deficiency was associated with structural and functional changes characteristic of emphysema, which were worsened by age, similar to levels observed with chronic CS exposure. Taken together, these findings suggest that repair of DNA damage by XPC plays an important and previously unrecognized role in the maintenance of alveolar structures. These findings support that loss of XPC, possibly due to chronic CS exposure, promotes emphysema development and further supports a link between DNA damage, impaired DNA repair, and development of emphysema
Confirmation of Xanthomonas axonopodis pv. manihotis causing cassava bacterial blight in Ivory Coast
Recommended from our members
Corporate social sustainability in supply chains: a thematic analysis of the literature
This paper maps out different research strands using thematic analysis on the literature pertaining to large companies’ efforts on social sustainability in their supply chains. The data corpus for this thematic analysis is a broad sample of the literature with articles from different journals and employing different research methodologies. Each of the high-level themes is identified at a level high enough to apply to research into not only social but also economic or environmental sustainability. These eight themes – stakeholder pressure; governance; contingencies; practices; partnerships; barriers and enablers; performance; and optimisation for performance improvement and trade-off – are then woven into a thematic map. We call this map the ‘4P’ model as it suggests that pressure and partnerships influence practices, which in turn impact performance. Researchers can use this thematic classification not only to position their research within the social sustainability literature but also to integrate research on economic, environmental and social sustainability
Repeat-length variation in a wheat cellulose synthase-like gene is associated with altered tiller number and stem cell wall composition
The tiller inhibition gene (tin) that reduces tillering in wheat (Triticum aestivum) is also associated with large spikes, increased grain weight, and thick leaves and stems. In this study, comparison of near-isogenic lines (NILs) revealed changes in stem morphology, cell wall composition, and stem strength. Microscopic analysis of stem cross-sections and chemical analysis of stem tissue indicated that cell walls in tin lines were thicker and more lignified than in free-tillering NILs. Increased lignification was associated with stronger stems in tin plants. A candidate gene for tin was identified through map-based cloning and was predicted to encode a cellulose synthase-like (Csl) protein with homology to members of the CslA clade. Dinucleotide repeat-length polymorphism in the 5′UTR region of the Csl gene was associated with tiller number in diverse wheat germplasm and linked to expression differences of Csl transcripts between NILs. We propose that regulation of Csl transcript and/or protein levels affects carbon partitioning throughout the plant, which plays a key role in the tin phenotype.J. Hyles, S. Vautrin, F. Pettolino, C. MacMillan, Z. Stachurski, J. Breen, H. Berges, T. Wicker, and W. Spielmeye
First report of generalized face processing difficulties in möbius sequence.
Reverse simulation models of facial expression recognition suggest that we recognize the emotions of others by running implicit motor programmes responsible for the production of that expression. Previous work has tested this theory by examining facial expression recognition in participants with Möbius sequence, a condition characterized by congenital bilateral facial paralysis. However, a mixed pattern of findings has emerged, and it has not yet been tested whether these individuals can imagine facial expressions, a process also hypothesized to be underpinned by proprioceptive feedback from the face. We investigated this issue by examining expression recognition and imagery in six participants with Möbius sequence, and also carried out tests assessing facial identity and object recognition, as well as basic visual processing. While five of the six participants presented with expression recognition impairments, only one was impaired at the imagery of facial expressions. Further, five participants presented with other difficulties in the recognition of facial identity or objects, or in lower-level visual processing. We discuss the implications of our findings for the reverse simulation model, and suggest that facial identity recognition impairments may be more severe in the condition than has previously been noted
Activity and Process Stability of Purified Green Pepper (Capsicum annuum) Pectin Methylesterase
Pectin methylesterase (PME) from green bell peppers (Capsicum annuum) was extracted and purified by affinity chromatography on a CNBr-Sepharose-PMEI column. A single protein peak with pectin methylesterase activity was observed. For the pepper PME, a biochemical characterization in terms of molar mass (MM), isoelectric points (pI), and kinetic parameters for activity and thermostability was performed. The optimum pH for PME activity at 22 °C was 7.5, and its optimum temperature at neutral pH was between 52.5 and 55.0 °C. The purified pepper PME required the presence of 0.13 M NaCl for optimum activity. Isothermal inactivation of purified pepper PME in 20 mM Tris buffer (pH 7.5) could be described by a fractional conversion model for lower temperatures (55?57 °C) and a biphasic model for higher temperatures (58?70 °C). The enzyme showed a stable behavior toward high-pressure/temperature treatments. Keywords: Capsicum annuum; pepper; pectin methylesterase; purification; characterization; thermal and high-pressure stabilit
"Kultur" als Form symbolischer Gewalt: Grenzziehungsprozesse im Kontext von Migration am Beispiel der Schweiz
Die Schweiz gilt international als Modell eines gelungenen Multikulturalismus, dann nämlich wenn es das Zusammenleben der vier Sprachgruppen (Romands, DeutschschweizerInnen, TessinerInnen, RäteromanInnen) betrifft. Ein sprachlicher wie auch religiöser Pluralismus ist und war stets ein Grundbaustein des Selbstverständnisses der „Willensnation“ Schweiz. Geht es aber um MigrantInnen präsentiert sich die Geschichte anders, denn in diesem Falle erscheinen religiöse und ethnisch-kulturelle Pluralität vorwiegend als problematisch. MigrantInnen gehören entsprechend den öffentlichen und politischen Diskursen nicht zum multikulturellen Staat, vielmehr sind Prozesse kollektiver Grenzziehungen und damit Schließungsmechanismen zu beobachten, in denen Ethnizität, Religion und Kultur zu den wichtigsten Differenzierungsmerkmale werden, wie Gemeinsamkeiten gegen innen (SchweizerInnen) und Barrieren gegen außen (Ausländer, Migranten, Muslims, etc.) hergestellt werden. Ich argumentiere in diesem Kapitel, dass sich dieser „Kulturdiskurs“ im letzten Jahrzehnt verstärkt hat und gleichzeitig semantischen Verschiebungen unterworfen war. Mittels der Grenzziehungsperspektive wird historisch nachvollzogen, wie Zuwanderung und Integration in politischen Debatten und Gesetz zunehmend kulturalisiert und ethnisiert wurden. Ein Fallbeispiel aus der Forschung dient mir anschließend der Veranschaulichung dieser theoretischen Perspektive und dieses „neuen“ Essentialismus
Star Formation Rate Indicators in Wide-Field Infrared Survey Preliminary Release
With the goal of investigating the degree to which theMIR luminosity in
theWidefield Infrared Survey Explorer (WISE) traces the SFR, we analyze 3.4,
4.6, 12 and 22 {\mu}m data in a sample of {\guillemotright} 140,000
star-forming galaxies or star-forming regions covering a wide range in
metallicity 7.66 < 12 + log(O/H) < 9.46, with redshift z < 0.4. These
star-forming galaxies or star-forming regions are selected by matching the WISE
Preliminary Release Catalog with the star-forming galaxy Catalog in SDSS DR8
provided by JHU/MPA 1.We study the relationship between the luminosity at 3.4,
4.6, 12 and 22 {\mu}m from WISE and H\alpha luminosity in SDSS DR8. From these
comparisons, we derive reference SFR indicators for use in our analysis. Linear
correlations between SFR and the 3.4, 4.6, 12 and 22 {\mu}m luminosity are
found, and calibrations of SFRs based on L(3.4), L(4.6), L(12) and L(22) are
proposed. The calibrations hold for galaxies with verified spectral
observations. The dispersion in the relation between 3.4, 4.6, 12 and 22 {\mu}m
luminosity and SFR relates to the galaxy's properties, such as 4000 {\deg}A
break and galaxy color.Comment: 10 pages, 3 figure
- …
