482 research outputs found
Direct Observation of Second Order Atom Tunnelling
Tunnelling of material particles through a classically impenetrable barrier
constitutes one of the hallmark effects of quantum physics. When interactions
between the particles compete with their mobility through a tunnel junction,
intriguing novel dynamical behaviour can arise where particles do not tunnel
independently. In single-electron or Bloch transistors, for example, the
tunnelling of an electron or Cooper pair can be enabled or suppressed by the
presence of a second charge carrier due to Coulomb blockade. Here we report on
the first direct and time-resolved observation of correlated tunnelling of two
interacting atoms through a barrier in a double well potential. We show that
for weak interactions between the atoms and dominating tunnel coupling,
individual atoms can tunnel independently, similar to the case in a normal
Josephson junction. With strong repulsive interactions present, two atoms
located on one side of the barrier cannot separate, but are observed to tunnel
together as a pair in a second order co-tunnelling process. By recording both
the atom position and phase coherence over time, we fully characterize the
tunnelling process for a single atom as well as the correlated dynamics of a
pair of atoms for weak and strong interactions. In addition, we identify a
conditional tunnelling regime, where a single atom can only tunnel in the
presence of a second particle, acting as a single atom switch. Our work
constitutes the first direct observation of second order tunnelling events with
ultracold atoms, which are the dominating dynamical effect in the strongly
interacting regime. Similar second-order processes form the basis of
superexchange interactions between atoms on neighbouring lattice sites of a
periodic potential, a central component of quantum magnetism.Comment: 18 pages, 4 figures, accepted for publication in Natur
Coherent transport of neutral atoms in spin-dependent optical lattice potentials
We demonstrate the controlled coherent transport and splitting of atomic wave
packets in spin-dependent optical lattice potentials. Such experiments open
intriguing possibilities for quantum state engineering of many body states.
After first preparing localized atomic wave functions in an optical lattice
through a Mott insulating phase, we place each atom in a superposition of two
internal spin states. Then state selective optical potentials are used to split
the wave function of a single atom and transport the corresponding wave packets
in two opposite directions. Coherence between the wave packets of an atom
delocalized over up to 7 lattice sites is demonstrated.Comment: 4 pages, 6 figure
Adiabatic loading of a Bose-Einstein condensate in a 3D optical lattice
We experimentally investigate the adiabatic loading of a Bose-Einstein
condensate into an optical lattice potential. The generation of excitations
during the ramp is detected by a corresponding decrease in the visibility of
the interference pattern observed after free expansion of the cloud. We focus
on the superfluid regime, where we show that the limiting time scale is related
to the redistribution of atoms across the lattice by single-particle tunneling
Bayesian feedback control of a two-atom spin-state in an atom-cavity system
We experimentally demonstrate real-time feedback control of the joint
spin-state of two neutral Caesium atoms inside a high finesse optical cavity.
The quantum states are discriminated by their different cavity transmission
levels. A Bayesian update formalism is used to estimate state occupation
probabilities as well as transition rates. We stabilize the balanced two-atom
mixed state, which is deterministically inaccessible, via feedback control and
find very good agreement with Monte-Carlo simulations. On average, the feedback
loops achieves near optimal conditions by steering the system to the target
state marginally exceeding the time to retrieve information about its state.Comment: 4 pages, 4 figure
Recommended from our members
Development and characterisation of a novel NF-κB reporter cell line for investigation of neuroinflammation
Aberrant activation of the transcription factor NF-κB, as well as uncontrolled inflammation has been linked to autoimmune diseases, development and progression of cancer and neurological disorders like Alzheimer’s disease. Reporter cell lines are a valuable state-of-the art tool for comparative analysis of in vitro drug screening. However, a reporter cell line for the investigation of NF-κB-driven neuroinflammation has not yet been available. Thus, we developed a stable neural NF-κB-reporter cell line to assess the potency of pro-inflammatory molecules and peptides, as well as anti-inflammatory pharmaceuticals.
We used lentivirus to transduce the glioma cell line U251-MG with a tandem NF-κB reporter construct containing GFP and firefly luciferase allowing an assessment of NF-κB activity via fluorescence microscopy, flow cytometry and luminometry. We observed a robust activation of NF-κB after exposure of the reporter cell line to Tumour
2
necrosis factor alpha (TNFα) and amyloid-β peptide [1-42] as well as to LPS derived from Salmonella minnesota and Escherichia coli.
Finally, we demonstrate that the U251-NF-κB-GFP-Luc reporter cells can be used for assessing the anti-inflammatory potential of pharmaceutical compounds using Bay11-7082 and IMD0354. In summary, our newly generated cell line is a robust and cost-efficient tool to study pro- and anti-inflammatory potential of drugs and biologicals in neural cells
Recommended from our members
Simple method for sub-diffraction resolution imaging of cellular structures on standard confocal microscopes by three-photon absorption of quantum dots
This study describes a simple technique that improves a recently developed 3D sub-diffraction imaging method based on three-photon absorption of commercially available quantum dots. The method combines imaging of biological samples via tri-exciton generation in quantum dots with deconvolution and spectral multiplexing, resulting in a novel approach for multi-color imaging of even thick biological samples at a 1.4 to 1.9-fold better spatial resolution. This approach is realized on a conventional confocal microscope equipped with standard continuous-wave lasers. We demonstrate the potential of multi-color tri-exciton imaging of quantum dots combined with deconvolution on viral vesicles in lentivirally transduced cells as well as intermediate filaments in three-dimensional clusters of mouse-derived neural stem cells (neurospheres) and dense microtubuli arrays in myotubes formed by stacks of differentiated C2C12 myoblasts
Three-Dimensional Dirac Electrons at the Fermi Energy in Cubic Inverse Perovskites: Ca_3PbO and its Family
The band structure of cubic inverse perovskites, Ca_3PbO and its family, are
investigated with the first-principles method. A close observation of the band
structure reveals that six equivalent Dirac electrons with a very small mass
exist on the line connecting the Gamma- and X-points, and at the symmetrically
equivalent points in the Brillouin zone. The discovered Dirac electrons are
three-dimensional and remarkably located exactly at the Fermi energy. A
tight-binding model describing the low-energy band structure is also
constructed and used to discuss the origin of the Dirac electrons in this
material. Materials related to Ca_3PbO are also studied, and some design
principles for the Dirac electrons in this series of materials are proposed.Comment: 4.2 pages, refined versio
Recommended from our members
Quantitative single-molecule imaging of TLR4 reveals ligand-specific receptor dimerization
In humans, invading pathogens are recognized by Toll-like receptors (TLRs). Upon recognition of lipopolysaccharide (LPS) derived from the cell wall of gram-negative bacteria, TLR4 dimerizes and can stimulate two different signaling pathways, the proinflammatory, MyD88-dependent pathway and the antiviral, MyD88-independent pathway. The balance between these two pathways is ligand-dependent, and ligand composition determines whether the invading pathogen activates or evades the host immune response. We investigated the dimerization behavior of TLR4 in intact cells in response to different LPS chemotypes through quantitative single-molecule localization microscopy (SMLM). Quantitative super-resolved data showed that TLR4 was monomeric in the absence of its coreceptors MD2 and CD14 in transfected HEK 293 cells. When TLR4 was present together with MD2 and CD14, but in the absence of LPS, 52% of the receptors were monomeric and 48% were dimeric. LPS from Escherichia coli or Salmonella minnesota caused the formation of dimeric TLR4 complexes, whereas the antagonistic LPS chemotype from Rhodobacter sphaeroides maintained TLR4 in monomeric form at the cell surface. Furthermore, we showed that LPS-dependent dimerization was required for the activation of NF-κB signaling. Together, these data demonstrate ligand-dependent dimerization of TLR4 in the cellular environment, which could pave the way for a molecular understanding of biased signaling downstream of the receptor
Recommended from our members
Biased signalling is an essential feature of TLR4 in glioma cells
A distinct feature of the Toll-like receptor 4 (TLR4) is its ability to trigger both MyD88-dependent and MyD88-independent signalling, culminating in activation of pro-inflammatory NF-κB and/or the antiviral IRF3. Although TLR4 agonists (lipopolysaccharides; LPSs) derived from different bacterial species have different endotoxic activity, the impact of LPS chemotype on the downstream signalling is not fully understood. Notably, different TLR4 agonists exhibit anti-tumoural activity in animal models of glioma, but the underlying molecular mechanisms are largely unknown.
Thus, we investigated the impact of LPS chemotype on the signalling events in the human glioma cell line U251. We found that LPS of Escherichia coli origin (LPSEC) leads to NF-κB-biased downstream signalling compared to Salmonella minnesota-derived LPS (LPSSM). Exposure of U251 cells to LPSEC resulted in faster nuclear translocation of the NF-κB subunit p65, higher NF-κB-activity and expression of its targets genes, and higher amount of secreted IL-6 compared to LPSSM. Using super-resolution microscopy we showed that the biased agonism of TLR4 in glioma cells is neither a result of differential regulation of receptor density nor of formation of higher order oligomers. Consistent with previous reports, LPSEC-mediated NF-κB activation led to significantly increased U251 proliferation, whereas LPSSM-induced IRF3 activity negatively influenced their invasiveness. Finally, treatment with methyl-β-cyclodextrin (MCD) selectively increased LPSSM-induced nuclear translocation of p65 and NF-κB activity without affecting IRF3.
Our data may explain how TLR4 agonists differently affect glioma cell proliferation and migration
Cooling toolbox for atoms in optical lattices
We propose and analyze several schemes for cooling bosonic and fermionic
atoms in an optical lattice potential close to the ground state of the
no-tunnelling regime. Some of the protocols rely on the concept of algorithmic
cooling, which combines occupation number filtering with ideas from ensemble
quantum computation. We also design algorithms that create an ensemble of
defect-free quantum registers. We study the efficiency of our protocols for
realistic temperatures and in the presence of a harmonic confinement. We also
propose an incoherent physical implementation of filtering which can be
operated in a continuous way.Comment: 14 pages, 13 figure
- …
