6,296 research outputs found
The growth of small corrosion fatigue cracks in alloy 2024
The corrosion fatigue crack growth characteristics of small surface and corner cracks in aluminum alloy 2024 is established. The damaging effect of salt water on the early stages of small crack growth is characterized by crack initiation at constituent particle pits, intergranular microcracking for a less than 100 micrometers, and transgranular small crack growth for a micrometer. In aqueous 1 percent NaCl and at a constant anodic potential of -700 mV(sub SCE), small cracks exhibit a factor of three increase in fatigue crack growth rates compared to laboratory air. Small cracks exhibit accelerated corrosion fatigue crack growth rates at low levels of delta-K (less than 1 MPa square root of m) below long crack delta-K (sub th). When exposed to Paris regime levels of crack tip stress intensity, small corrosion fatigue cracks exhibit growth rates similar to that observed for long cracks. Results suggest that crack closure effects influence the corrosion fatigue crack growth rates of small cracks (a less than or equal to 100 micrometers). This is evidenced by similar small and long crack growth behavior at various levels of R. Contrary to the corrosion fatigue characteristics of small cracks in high strength steels, no pronounced chemical crack length effect is observed for Al by 2024 exposed to salt water
Experimental Investigation of Sublimation of Ice at Subsonic and Supersonic Speeds and Its Relation to Heat Transfer
An experimental investigation was conducted in a 3.84- by 10-inch tunnel to determine the mass transfer by sublimation, heat transfer, and skin friction for an iced surface on a flat plate for Mach numbers of 0.4, 0.6, and 0.8 and pressure altitudes to 30,000 feet. Measurements of rates of sublimation were also made for a Mach number of 1.3 at a pressure altitude of 30,000 feet. The results show that the parameters of sublimation and heat transfer were 40 to 50 percent greater for an iced surface than was the bare-plate heat-transfer parameter. For iced surfaces of equivalent roughness, the ratio of sublimation to heat-transfer parameters was found to be 0.90. The sublimation data obtained at a Mach number of 1.3 showed no appreciable deviation from that obtained at subsonic speeds. The data obtained indicate that sublimation as a means of removing ice formations of appreciable thickness is usually too slow to be of mach value in the de-icing of aircraft at high altitudes
Partial order and a -topology in a set of finite quantum systems
A `whole-part' theory is developed for a set of finite quantum systems
with variables in . The partial order `subsystem'
is defined, by embedding various attributes of the system (quantum
states, density matrices, etc) into their counterparts in the supersystem
(for ). The compatibility of these embeddings is studied. The
concept of ubiquity is introduced for quantities which fit with this structure.
It is shown that various entropic quantities are ubiquitous. The sets of
various quantities become -topological spaces with the divisor topology,
which encapsulates fundamental physical properties. These sets can be converted
into directed-complete partial orders (dcpo), by adding `top elements'. The
continuity of various maps among these sets is studied
Efficient Dynamic Approximate Distance Oracles for Vertex-Labeled Planar Graphs
Let be a graph where each vertex is associated with a label. A
Vertex-Labeled Approximate Distance Oracle is a data structure that, given a
vertex and a label , returns a -approximation of
the distance from to the closest vertex with label in . Such
an oracle is dynamic if it also supports label changes. In this paper we
present three different dynamic approximate vertex-labeled distance oracles for
planar graphs, all with polylogarithmic query and update times, and nearly
linear space requirements
Rapid generation of chromosome-specific alphoid DNA probes using the polymerase chain reaction
Non-isotopic in situ hybridization of chromosome-specific alphoid DNA probes has become a potent tool in the study of numerical aberrations of specific human chromosomes at all stages of the cell cycle. In this paper, we describe approaches for the rapid generation of such probes using the polymerase chain reaction (PCR), and demonstrate their chromosome specificity by fluorescence in situ hybridization to normal human metaphase spreads and interphase nuclei. Oligonucleotide primers for conserved regions of the alpha satellite monomer were used to generate chromosome-specific DNA probes from somatic hybrid cells containing various human chromosomes, and from DNA libraries from sorted human chromosomes. Oligonucleotide primers for chromosome-specific regions of the alpha satellite monomer were used to generate specific DNA probes for the pericentromeric heterochromatin of human chromosomes 1, 6, 7, 17 and X directly from human genomic DNA
Replica-Based Crack Inspection
Surface replication has been proposed as a method for crack detection in space shuttle main engine flowliner slots. The results of a feasibility study show that examination of surface replicas with a scanning electron microscope can result in the detection of cracks as small as 0.005 inch, and surface flaws as small as 0.001 inch, for the flowliner material
Fluctuations of water near extended hydrophobic and hydrophilic surfaces
We use molecular dynamics simulations of the SPC-E model of liquid water to
derive probability distributions for water density fluctuations in probe
volumes of different shapes and sizes, both in the bulk as well as near
hydrophobic and hydrophilic surfaces. To obtain our results, we introduce a
biased sampling of coarse-grained densities, which in turn biases the actual
solvent density. The technique is easily combined with molecular dynamics
integration algorithms. Our principal result is that the probability for
density fluctuations of water near a hydrophobic surface, with or without
surface-water attractions, is akin to density fluctuations at the water-vapor
interface. Specifically, the probability of density depletion near the surface
is significantly larger than that in bulk. In contrast, we find that the
statistics of water density fluctuations near a model hydrophilic surface are
similar to that in the bulk
Increased fluxes of shelf-derived materials to the central Arctic Ocean
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): eaao1302, doi:10.1126/sciadv.aao1302.Rising temperatures in the Arctic Ocean region are responsible for changes such as reduced ice cover, permafrost thawing, and increased river discharge, which, together, alter nutrient and carbon cycles over the vast Arctic continental shelf. We show that the concentration of radium-228, sourced to seawater through sediment-water exchange processes, has increased substantially in surface waters of the central Arctic Ocean over the past decade. A mass balance model for 228Ra suggests that this increase is due to an intensification of shelf-derived material inputs to the central basin, a source that would also carry elevated concentrations of dissolved organic carbon and nutrients. Therefore, we suggest that significant changes in the nutrient, carbon, and trace metal balances of the Arctic Ocean are underway, with the potential to affect biological productivity and species assemblages in Arctic surface waters.This work was funded by NSF awards OCE-1458305 to M.A.C. and
OCE-1458424 to W.S.M. The Mackenzie River sampling was supported by a Graduate Student
Research Award from the North Pacific Research Board to L.E.K. L.E.K. also acknowledges
support from a National Defense Science and Engineering Graduate Fellowship. I.G.R.
acknowledges funding by the contributors to the U.S. Interagency Arctic Buoy Program, which
include the U.S. Coast Guard, the Department of Energy, NASA, the U.S. Navy, the National
Oceanic and Atmospheric Administration, and NSF
- …
