153 research outputs found

    SDF1-Induced Antagonism of Axonal Repulsion Requires Multiple G-Protein Coupled Signaling Components That Work in Parallel

    Get PDF
    SDF1 reduces the responsiveness of axonal growth cones to repellent guidance cues in a pertussis-toxin-sensitive, cAMP-dependent manner. Here, we show that SDF1's antirepellent effect can be blocked in embryonic chick dorsal root ganglia (DRGs) by expression of peptides or proteins inhibiting either Gαi, Gαq, or Gβγ. SDF1 antirepellent activity is also blocked by pharmacological inhibition of PLC, a common effector protein for Gαq. We also show that SDF1 antirepellent activity can be mimicked by overexpression of constitutively active Gαi, Gαq, or Gαs. These results suggest a model in which multiple G protein components cooperate to produce the cAMP levels required for SDF1 antirepellent activity

    The Gαq/11 Proteins Contribute to T Lymphocyte Migration by Promoting Turnover of Integrin LFA-1 through Recycling

    Get PDF
    The role of Gαi proteins coupled to chemokine receptors in directed migration of immune cells is well understood. In this study we show that the separate class of Gαq/11 proteins is required for the underlying ability of T cells to migrate both randomly and in a directed chemokine-dependent manner. Interfering with Gαq or Gα11 using dominant negative cDNA constructs or siRNA for Gαq causes accumulation of LFA-1 adhesions and stalled migration. Gαq/11 has an impact on LFA-1 expression at plasma membrane level and also on its internalization. Additionally Gαq co-localizes with LFA-1- and EEA1-expressing intracellular vesicles and partially with Rap1- but not Rab11-expressing vesicles. However the influence of Gαq is not confined to the vesicles that express it, as its reduction alters intracellular trafficking of other vesicles involved in recycling. In summary vesicle-associated Gαq/11 is required for the turnover of LFA-1 adhesion that is necessary for migration. These G proteins participate directly in the initial phase of recycling and this has an impact on later stages of the endo-exocytic pathway
    corecore