1,608 research outputs found
Neurophysiology
Contains reports on three research projects.Bell Telephone Laboratories, IncorporatedNational Institutes of HealthTeagle Foundation, IncorporatedUnited States Air Force (WADD Contract AF33(616)-7783
Polynomial evaluation over finite fields: new algorithms and complexity bounds
An efficient evaluation method is described for polynomials in finite fields.
Its complexity is shown to be lower than that of standard techniques when the
degree of the polynomial is large enough. Applications to the syndrome
computation in the decoding of Reed-Solomon codes are highlighted.Comment: accepted for publication in Applicable Algebra in Engineering,
Communication and Computing. The final publication will be available at
springerlink.com. DOI: 10.1007/s00200-011-0160-
Properties of continuous Fourier extension of the discrete cosine transform and its multidimensional generalization
A versatile method is described for the practical computation of the discrete
Fourier transforms (DFT) of a continuous function given by its values
at the points of a uniform grid generated by conjugacy classes
of elements of finite adjoint order in the fundamental region of
compact semisimple Lie groups. The present implementation of the method is for
the groups SU(2), when is reduced to a one-dimensional segment, and for
in multidimensional cases. This simplest case
turns out to result in a transform known as discrete cosine transform (DCT),
which is often considered to be simply a specific type of the standard DFT.
Here we show that the DCT is very different from the standard DFT when the
properties of the continuous extensions of these two discrete transforms from
the discrete grid points to all points are
considered. (A) Unlike the continuous extension of the DFT, the continuous
extension of (the inverse) DCT, called CEDCT, closely approximates
between the grid points . (B) For increasing , the derivative of CEDCT
converges to the derivative of . And (C), for CEDCT the principle of
locality is valid. Finally, we use the continuous extension of 2-dimensional
DCT to illustrate its potential for interpolation, as well as for the data
compression of 2D images.Comment: submitted to JMP on April 3, 2003; still waiting for the referee's
Repor
Neurophysiology
Contains reports on four research projects.National Institutes of Health (Grant B-1865-(C3), Grant MH-04737-02)United States Air Force, Aeronautical Systems Division (Contract AF33(616)-7783)Teagle Foundation, IncorporatedBell Telephone Laboratories, Incorporate
Ergodic properties of a generic non-integrable quantum many-body system in thermodynamic limit
We study a generic but simple non-integrable quantum {\em many-body} system
of {\em locally} interacting particles, namely a kicked model of spinless
fermions on 1-dim lattice (equivalent to a kicked Heisenberg XX-Z chain of 1/2
spins). Statistical properties of dynamics (quantum ergodicity and quantum
mixing) and the nature of quantum transport in {\em thermodynamic limit} are
considered as the kick parameters (which control the degree of
non-integrability) are varied. We find and demonstrate {\em ballistic}
transport and non-ergodic, non-mixing dynamics (implying infinite conductivity
at all temperatures) in the {\em integrable} regime of zero or very small kick
parameters, and more generally and important, also in {\em non-integrable}
regime of {\em intermediate} values of kicked parameters, whereas only for
sufficiently large kick parameters we recover quantum ergodicity and mixing
implying normal (diffusive) transport. We propose an order parameter (charge
stiffness ) which controls the phase transition from non-mixing/non-ergodic
dynamics (ordered phase, ) to mixing/ergodic dynamics (disordered phase,
D=0) in the thermodynamic limit. Furthermore, we find {\em exponential decay of
time-correlation function} in the regime of mixing dynamics.
The results are obtained consistently within three different numerical and
analytical approaches: (i) time evolution of a finite system and direct
computation of time correlation functions, (ii) full diagonalization of finite
systems and statistical analysis of stationary data, and (iii) algebraic
construction of quantum invariants of motion of an infinite system, in
particular the time averaged observables.Comment: 18 pages in REVTeX with 14 eps figures included, Submitted to
Physical Review
An adaptive prefix-assignment technique for symmetry reduction
This paper presents a technique for symmetry reduction that adaptively
assigns a prefix of variables in a system of constraints so that the generated
prefix-assignments are pairwise nonisomorphic under the action of the symmetry
group of the system. The technique is based on McKay's canonical extension
framework [J.~Algorithms 26 (1998), no.~2, 306--324]. Among key features of the
technique are (i) adaptability---the prefix sequence can be user-prescribed and
truncated for compatibility with the group of symmetries; (ii)
parallelizability---prefix-assignments can be processed in parallel
independently of each other; (iii) versatility---the method is applicable
whenever the group of symmetries can be concisely represented as the
automorphism group of a vertex-colored graph; and (iv) implementability---the
method can be implemented relying on a canonical labeling map for
vertex-colored graphs as the only nontrivial subroutine. To demonstrate the
practical applicability of our technique, we have prepared an experimental
open-source implementation of the technique and carry out a set of experiments
that demonstrate ability to reduce symmetry on hard instances. Furthermore, we
demonstrate that the implementation effectively parallelizes to compute
clusters with multiple nodes via a message-passing interface.Comment: Updated manuscript submitted for revie
An Action-Based Approach to Presence: Foundations and Methods
This chapter presents an action-based approach to presence. It starts by briefly describing the theoretical and empirical foundations of this approach, formalized into three key notions of place/space, action and mediation. In the light of these notions, some common assumptions about presence are then questioned: assuming a neat distinction between virtual and real environments, taking for granted the contours of the mediated environment and considering presence as a purely personal state. Some possible research topics opened up by adopting action as a unit of analysis are illustrated. Finally, a case study on driving as a form of mediated presence is discussed, to provocatively illustrate the flexibility of this approach as a unified framework for presence in digital and physical environment
Human appropriation of net primary production of Sahel ecosystems under a changing climate to 2050
Responding to the food security challenge in the Sahel mainly relies on the supply of goods and services from ecosystems of the region. The evolution of the Sahelian population in the wake of climate change questions whether available biomass from agriculture and natural vegetation will be covering future human needs. To explore this issue, we present a prospective study of the human carrying capacity of Sahel ecosystems balancing its biomass supply and demand to the year 2050. This was obtained by applying a net primary production (NPP) demand and supply model based on satellite derived NPP, the most reliable information on land cover, crop types and Land Utilisation Types (LUTs), as well as official production (completed by net trade flows) statistics from FAOSTAT and UN population projections. How four alternative agriculture scenarios affect the Sahel's carrying capacity, given its variability and expected vulnerability to climate change (CC), is also addressed contrasting possible futures. Results, expressed in terms of the human appropriation of NPP (HANPP), and supported by scenario narratives, show that HANPP evolves from the current 29% (food, feed and fuel components included) to 75%-88% depending on the scenario. The approach also generated HANPP maps indicating areas of special concern (“hot spots”) as well as those expected to generate opportunities (“hope spots”) in terms of local NPP supply and demand balance. The two scenarios with most agricultural technological improvements achieve the most favourable NPP food share results but fall short of compensating for a more than doubling demand over the same period. Today about 15% of food biomass is imported against an expected 40% by the year 2050 and up to 65% in the least favourable scenario of this prospective. These are conservative estimates as they do not account for the likely future change in individual dietary preferences and increases in consumption. Such projections point to the need to reinforce agriculture policy with complementary assertive strategies through the diversification of the economy and adapted regional trade policy.JRC.D.4 - Economics of Agricultur
Digital Quantum Simulation of the Statistical Mechanics of a Frustrated Magnet
Many interesting problems in physics, chemistry, and computer science are
equivalent to problems of interacting spins. However, most of these problems
require computational resources that are out of reach by classical computers. A
promising solution to overcome this challenge is to exploit the laws of quantum
mechanics to perform simulation. Several "analog" quantum simulations of
interacting spin systems have been realized experimentally. However, relying on
adiabatic techniques, these simulations are limited to preparing ground states
only. Here we report the first experimental results on a "digital" quantum
simulation on thermal states; we simulated a three-spin frustrated magnet, a
building block of spin ice, with an NMR quantum information processor, and we
are able to explore the phase diagram of the system at any simulated
temperature and external field. These results serve as a guide for identifying
the challenges for performing quantum simulation on physical systems at finite
temperatures, and pave the way towards large scale experimental simulations of
open quantum systems in condensed matter physics and chemistry.Comment: 7 pages for the main text plus 6 pages for the supplementary
material
- …
