4,211 research outputs found
Optical Properties of Quantum-Dot-Doped Liquid Scintillators
Semiconductor nanoparticles (quantum dots) were studied in the context of
liquid scintillator development for upcoming neutrino experiments. The unique
optical and chemical properties of quantum dots are particularly promising for
the use in neutrinoless double beta decay experiments. Liquid scintillators for
large scale neutrino detectors have to meet specific requirements which are
reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper,
we report results on laboratory-scale measurements of the attenuation length
and the fluorescence properties of three commercial quantum dot samples. The
results include absorbance and emission stability measurements, improvement in
transparency due to filtering of the quantum dot samples, precipitation tests
to isolate the quantum dots from solution and energy transfer studies with
quantum dots and the fluorophore PPO.Comment: version 2, minor text update
Designing adaptive structures for whole life energy savings
Designing structures with minimal environmental impact is emerging as a seriou concern in the construction sector. Conventional structural design practice involves designing first for strength, followed by secondary checks on deflections and other serviceability limits states. If these limits are exceeded, the con-ventional solution has been to add material to increase stiffness. When the design is governed by unpredicta-ble events such as fluctuating loads, strong wind storms or earthquakes, the structure is effectively overde-signed for most of its working life. This paper presents a methodology to design adaptive structures that minimize the whole life energy consumption. The methodology is illustrated on plane pin-jointed trusses, both determinate and indeterminate. Strategically placing actuators allow the internal flow of forces to be ho-mogenized and displacements to be controlled. The actuators only start working when the loads reach a cer-tain threshold. Below this threshold, the structure resists loads mainly passively thereby limiting significantly the operational energy used. It was found that both indeterminate and determinate topologies bring substantial energy savings up to 70% of the total energy
Adaptive structures for whole-life energy savings
The design methodology described in this paper takes a substantial shift from conventional methods. Traditionally sizing is based on the worst expected load scenario. By contrast to this conventional passive approach the method presented here replaces passive member strategically with active elements (actuators) which are only activated when the loads reach a certain threshold. The structure can withstand low level of loads passively. Above the threshold, actuation comes in to allow the structure to cope with high but rare loading scenarios. Active control introduces operational energy consumption in addition to the energy embodied in a passive design. In this paper we use this dual design to minimize the overall energy required by the structures. This methodology has been used on a simple truss structure and it was showed that it allows significant weight saving compared to conventional passive design. We extend the application of the methodology to a more complex 3D structure. It is confirmed that an optimum activation threshold exists that leads to design that minimises the total energy of the structure. Compared to an optimised passive design we show that the total energy saving is 10-fold
Reconstructing the evolution of the submarine Monterey Canyon System from Os, Nd, and Pb isotopes in hydrogenetic Fe-Mn crusts
Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 18 (2017): 3946–3963, doi:10.1002/2017GC007071.The sources of terrestrial material delivered to the California margin over the past 7 Myr were assessed using 187Os/188Os, Nd, and Pb isotopes in hydrogenetic ferromanganese crusts from three seamounts along the central and southern California margin. From 6.8 to 4.5 (±0.5) Ma, all three isotope systems show more radiogenic values at Davidson Seamount, located near the base of the Monterey Canyon System, than in Fe-Mn crusts from the more remote Taney and Hoss Seamounts. At the Taney Seamounts, approximately 225 km farther offshore from Davidson Seamount, 187Os/188Os values, but not Pb and Nd isotope ratios, also deviate from the Cenozoic seawater curve toward more radiogenic values from 6.8 to 4.5 (±0.5) Ma. However, none of the isotope systems in Fe-Mn crusts deviate from seawater at Hoss Seamount located approximately 450 km to the south. The regional gradients in isotope ratios indicate that substantial input of dissolved and particulate terrestrial material into the Monterey Canyon System is responsible for the local deviations in the seawater Nd, Pb, and Os isotope compositions from 6.8 to 4.5 (±0.5) Ma. The isotope ratios recorded in Fe-Mn crusts are consistent with a southern Sierra Nevada or western Basin and Range provenance of the terrestrial material which was delivered by rivers to the canyon. The exhumation of the modern Monterey Canyon must have begun between 10 and 6.8 ± 0.5 Ma, as indicated by our data, the age of incised strata, and paleo-location of the Monterey Canyon relative to the paleo-coastline.Funding was
provided by the United States
Geological Survey Pacific Coastal and
Marine Science Center Marine Minerals
Group, the University of California
Santa Cruz Scholarship for Re-Entry
Women in Science, and the UCSC
Earth and Planetary Science
Department Waters Award.2018-05-1
Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)
Submitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingNeutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors
Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)
Neutron tagging in Gadolinium-doped water may play a significant role in
reducing backgrounds from atmospheric neutrinos in next generation proton-decay
searches using megaton-scale Water Cherenkov detectors. Similar techniques
might also be useful in the detection of supernova neutrinos. Accurate
determination of neutron tagging efficiencies will require a detailed
understanding of the number of neutrons produced by neutrino interactions in
water as a function of momentum transferred. We propose the Atmospheric
Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the
neutron yield of atmospheric neutrino interactions in gadolinium-doped water.
An innovative aspect of the ANNIE design is the use of precision timing to
localize interaction vertices in the small fiducial volume of the detector. We
propose to achieve this by using early production of LAPPDs (Large Area
Picosecond Photodetectors). This experiment will be a first application of
these devices demonstrating their feasibility for Water Cherenkov neutrino
detectors.Comment: Submitted for the January 2014 Fermilab Physics Advisory Committee
meetin
Developing the content of two behavioural interventions : using theory-based interventions to promote GP management of upper respiratory tract infection without prescribing antibiotics #1
Background: Evidence shows that antibiotics have limited effectiveness in the management of upper respiratory tract infection (URTI) yet GPs continue to prescribe antibiotics. Implementation research does not currently provide a strong evidence base to guide the choice of interventions to promote the uptake of such evidence-based practice by health professionals. While systematic reviews demonstrate that interventions to change clinical practice can be effective, heterogeneity between studies hinders generalisation to routine practice. Psychological models of behaviour change that have been used successfully to predict variation in behaviour in the general population can also predict the clinical behaviour of healthcare professionals. The purpose of this study was to design two theoretically-based interventions to promote the management of upper respiratory tract infection (URTI) without prescribing antibiotics. Method: Interventions were developed using a systematic, empirically informed approach in which we: selected theoretical frameworks; identified modifiable behavioural antecedents that predicted GPs intended and actual management of URTI; mapped these target antecedents on to evidence-based behaviour change techniques; and operationalised intervention components in a format suitable for delivery by postal questionnaire. Results: We identified two psychological constructs that predicted GP management of URTI: "Self-efficacy," representing belief in one's capabilities, and "Anticipated consequences," representing beliefs about the consequences of one's actions. Behavioural techniques known to be effective in changing these beliefs were used in the design of two paper-based, interactive interventions. Intervention 1 targeted self-efficacy and required GPs to consider progressively more difficult situations in a "graded task" and to develop an "action plan" of what to do when next presented with one of these situations. Intervention 2 targeted anticipated consequences and required GPs to respond to a "persuasive communication" containing a series of pictures representing the consequences of managing URTI with and without antibiotics. Conclusion: It is feasible to systematically develop theoretically-based interventions to change professional practice. Two interventions were designed that differentially target generalisable constructs predictive of GP management of URTI. Our detailed and scientific rationale for the choice and design of our interventions will provide a basis for understanding any effects identified in their evaluation. Trial registration: Clinicaltrials.gov NCT00376142This study is funded by the European Commission Research Directorate as part of a multi-partner program: Research Based Education and Quality Improvement (ReBEQI): A Framework and tools to develop effective quality improvement programs in European healthcare. (Proposal No: QLRT-2001-00657)
- …
