110 research outputs found
Comparing Perceptions of a Dimmable LED Lighting System Between a Real Space and a Virtual Reality Display
25 pagesOver the last several decades, designers have used digital screens to view images of real and simulated spaces and make critical design decisions. Screen technology has improved during this time, as technologies like OLED have replaced legacy displays (CRT, plasma, and LCD). These new screens provide a higher pixel resolution, luminous output and contrast ratio. Immersive head-mounted displays now allow designers to view immersive images, and recent developments in real-time rendering have encouraged the uptake of virtual reality (VR) head-mounted displays in mainstream practice and design education. This paper presents an experiment on lighting perception using a series of LED lighting conditions in a real space and a virtual representation of those conditions captured using a 360° high-dynamic-range camera and presented on an HTC Vive Pro HMD. Fifty-three participants were asked to rate each lighting condition by viewing it in a real space (n = 30) or via immersive HDR photographs displayed in a VR HMD (n = 23). The results show that ratings of visual comfort, pleasantness, evenness, contrast and glare are similar between the HTC Vive Pro HMD and our real space when evaluating well-lit scenes, but significant differences emerge in dim and highly contrasted scenes for a number of rating scales
A Secular Trend toward Earlier Male Sexual Maturity: Evidence from Shifting Ages of Male Young Adult Mortality
This paper shows new evidence of a steady long-term decline in age of male sexual maturity since at least the mid-eighteenth century. A method for measuring the timing of male maturity is developed based on the age at which male young adult mortality accelerates. The method is applied to mortality data from Sweden, Denmark, Norway, the United Kingdom, and Italy. The secular trend toward earlier male sexual maturity parallels the trend toward earlier menarche for females, suggesting that common environmental cues influence the speed of both males' and females' sexual maturation
The Metagenome of an Anaerobic Microbial Community Decomposing Poplar Wood Chips
This study describes the composition and metabolic potential of a lignocellulosic biomass degrading community that decays poplar wood chips under anaerobic conditions. We examined the community that developed on poplar biomass in a non-aerated bioreactor over the course of a year, with no microbial inoculation other than the naturally occurring organisms on the woody material. The composition of this community contrasts in important ways with biomass-degrading communities associated with higher organisms, which have evolved over millions of years into a symbiotic relationship. Both mammalian and insect hosts provide partial size reduction, chemical treatments (low or high pH environments), and complex enzymatic ‘secretomes’ that improve microbial access to cell wall polymers. We hypothesized that in order to efficiently degrade coarse untreated biomass, a spontaneously assembled free-living community must both employ alternative strategies, such as enzymatic lignin depolymerization, for accessing hemicellulose and cellulose and have a much broader metabolic potential than host-associated communities. This would suggest that such a community would make a valuable resource for finding new catalytic functions involved in biomass decomposition and gaining new insight into the poorly understood process of anaerobic lignin depolymerization. Therefore, in addition to determining the major players in this community, our work specifically aimed at identifying functions potentially involved in the depolymerization of cellulose, hemicelluloses, and lignin, and to assign specific roles to the prevalent community members in the collaborative process of biomass decomposition. A bacterium similar to Magnetospirillum was identified among the dominant community members, which could play a key role in the anaerobic breakdown of aromatic compounds. We suggest that these compounds are released from the lignin fraction in poplar hardwood during the decay process, which would point to lignin-modification or depolymerization under anaerobic conditions
Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level
<p>Abstract</p> <p>Background</p> <p><it>Rhizopus oryzae </it>is a zygomycete filamentous fungus, well-known as a saprobe ubiquitous in soil and as a pathogenic/spoilage fungus, causing Rhizopus rot and mucomycoses.</p> <p>Results</p> <p>Carbohydrate Active enzyme (CAZy) annotation of the <it>R. oryzae </it>identified, in contrast to other filamentous fungi, a low number of glycoside hydrolases (GHs) and a high number of glycosyl transferases (GTs) and carbohydrate esterases (CEs). A detailed analysis of CAZy families, supported by growth data, demonstrates highly specialized plant and fungal cell wall degrading abilities distinct from ascomycetes and basidiomycetes. The specific genomic and growth features for degradation of easily digestible plant cell wall mono- and polysaccharides (starch, galactomannan, unbranched pectin, hexose sugars), chitin, chitosan, β-1,3-glucan and fungal cell wall fractions suggest specific adaptations of <it>R. oryzae </it>to its environment.</p> <p>Conclusions</p> <p>CAZy analyses of the genome of the zygomycete fungus <it>R. oryzae </it>and comparison to ascomycetes and basidiomycete species revealed how evolution has shaped its genetic content with respect to carbohydrate degradation, after divergence from the Ascomycota and Basidiomycota.</p
Comparative Genome Analysis of Filamentous Fungi Reveals Gene Family Expansions Associated with Fungal Pathogenesis
Fungi and oomycetes are the causal agents of many of the most serious diseases of plants. Here we report a detailed comparative analysis of the genome sequences of thirty-six species of fungi and oomycetes, including seven plant pathogenic species, that aims to explore the common genetic features associated with plant disease-causing species. The predicted translational products of each genome have been clustered into groups of potential orthologues using Markov Chain Clustering and the data integrated into the e-Fungi object-oriented data warehouse (http://www.e-fungi.org.uk/). Analysis of the species distribution of members of these clusters has identified proteins that are specific to filamentous fungal species and a group of proteins found only in plant pathogens. By comparing the gene inventories of filamentous, ascomycetous phytopathogenic and free-living species of fungi, we have identified a set of gene families that appear to have expanded during the evolution of phytopathogens and may therefore serve important roles in plant disease. We have also characterised the predicted set of secreted proteins encoded by each genome and identified a set of protein families which are significantly over-represented in the secretomes of plant pathogenic fungi, including putative effector proteins that might perturb host cell biology during plant infection. The results demonstrate the potential of comparative genome analysis for exploring the evolution of eukaryotic microbial pathogenesis
A secretomic view of woody and nonwoody lignocellulose degradation by Pleurotus ostreatus
Extracellular proteins of Trametes hirsuta st. 072 induced by copper ions and a lignocellulose substrate
Desenvolvimento motor e funcional em crianças nascidas pré-termo e a termo: influência de fatores de risco biológico e ambiental
Comparative analysis of the secretomes of Schizophyllum commune and other wood-decay basidiomycetes during solid-state fermentation reveals its unique lignocellulose-degrading enzyme system
- …
