257,716 research outputs found

    Simulating California reservoir operation using the classification and regression-tree algorithm combined with a shuffled cross-validation scheme

    Get PDF
    The controlled outflows from a reservoir or dam are highly dependent on the decisions made by the reservoir operators, instead of a natural hydrological process. Difference exists between the natural upstream inflows to reservoirs and the controlled outflows from reservoirs that supply the downstream users. With the decision maker's awareness of changing climate, reservoir management requires adaptable means to incorporate more information into decision making, such as water delivery requirement, environmental constraints, dry/wet conditions, etc. In this paper, a robust reservoir outflow simulation model is presented, which incorporates one of the well-developed data-mining models (Classification and Regression Tree) to predict the complicated human-controlled reservoir outflows and extract the reservoir operation patterns. A shuffled cross-validation approach is further implemented to improve CART's predictive performance. An application study of nine major reservoirs in California is carried out. Results produced by the enhanced CART, original CART, and random forest are compared with observation. The statistical measurements show that the enhanced CART and random forest overperform the CART control run in general, and the enhanced CART algorithm gives a better predictive performance over random forest in simulating the peak flows. The results also show that the proposed model is able to consistently and reasonably predict the expert release decisions. Experiments indicate that the release operation in the Oroville Lake is significantly dominated by SWP allocation amount and reservoirs with low elevation are more sensitive to inflow amount than others

    Heavy paths and cycles in weighted graphs

    Get PDF
    A weighted graph is a graph in which each edge e is assigned a non-negative\ud number w(e)w(e), called the weight of ee. In this paper, some theorems on the\ud existence of long paths and cycles in unweighted graphs are generalized to heavy\ud paths and cycles in weighted graphs

    Aberrant posterior cingulate connectivity classify first-episode schizophrenia from controls: A machine learning study

    No full text
    Background Posterior cingulate cortex (PCC) is a key aspect of the default mode network (DMN). Aberrant PCC functional connectivity (FC) is implicated in schizophrenia, but the potential for PCC related changes as biological classifier of schizophrenia has not yet been evaluated. Methods We conducted a data-driven approach using resting-state functional MRI data to explore differences in PCC-based region- and voxel-wise FC patterns, to distinguish between patients with first-episode schizophrenia (FES) and demographically matched healthy controls (HC). Discriminative PCC FCs were selected via false discovery rate estimation. A gradient boosting classifier was trained and validated based on 100 FES vs. 93 HC. Subsequently, classification models were tested in an independent dataset of 87 FES patients and 80 HC using resting-state data acquired on a different MRI scanner. Results Patients with FES had reduced connectivity between PCC and frontal areas, left parahippocampal regions, left anterior cingulate cortex, and right inferior parietal lobule, but hyperconnectivity with left lateral temporal regions. Predictive voxel-wise clusters were similar to region-wise selected brain areas functionally connected with PCC in relation to discriminating FES from HC subject categories. Region-wise analysis of FCs yielded a relatively high predictive level for schizophrenia, with an average accuracy of 72.28% in the independent samples, while selected voxel-wise connectivity yielded an accuracy of 68.72%. Conclusion FES exhibited a pattern of both increased and decreased PCC-based connectivity, but was related to predominant hypoconnectivity between PCC and brain areas associated with DMN, that may be a useful differential feature revealing underpinnings of neuropathophysiology for schizophrenia

    Nodeless superconductivity in Ca3Ir4Sn13: evidence from quasiparticle heat transport

    Full text link
    We report resistivity ρ\rho and thermal conductivity κ\kappa measurements on Ca3_3Ir4_4Sn13_{13} single crystals, in which superconductivity with Tc7T_c \approx 7 K was claimed to coexist with ferromagnetic spin-fluctuations. Among three crystals, only one crystal shows a small hump in resistivity near 20 K, which was previously attributed to the ferromagnetic spin-fluctuations. Other two crystals show the ρT2\rho \sim T^2 Fermi-liquid behavior at low temperature. For both single crystals with and without the resistivity anomaly, the residual linear term κ0/T\kappa_0/T is negligible in zero magnetic field. In low fields, κ0(H)/T\kappa_0(H)/T shows a slow field dependence. These results demonstrate that the superconducting gap of Ca3_3Ir4_4Sn13_{13} is nodeless, thus rule out nodal gap caused by ferromagnetic spin-fluctuations.Comment: 5 pages, 4 figure
    corecore