451 research outputs found
Is Mathematics the Theory of Instantiated Structural Universals?
This paper rejects metaphysical realism about structural universals as a basis for mathematical realism about numbers, and argues that one construal of structural universals via non-well-founded sets should be resisted by the mathematical realist
Self-similarity of complex networks
Complex networks have been studied extensively due to their relevance to many
real systems as diverse as the World-Wide-Web (WWW), the Internet, energy
landscapes, biological and social networks
\cite{ab-review,mendes,vespignani,newman,amaral}. A large number of real
networks are called ``scale-free'' because they show a power-law distribution
of the number of links per node \cite{ab-review,barabasi1999,faloutsos}.
However, it is widely believed that complex networks are not {\it length-scale}
invariant or self-similar. This conclusion originates from the ``small-world''
property of these networks, which implies that the number of nodes increases
exponentially with the ``diameter'' of the network
\cite{erdos,bollobas,milgram,watts}, rather than the power-law relation
expected for a self-similar structure. Nevertheless, here we present a novel
approach to the analysis of such networks, revealing that their structure is
indeed self-similar. This result is achieved by the application of a
renormalization procedure which coarse-grains the system into boxes containing
nodes within a given "size". Concurrently, we identify a power-law relation
between the number of boxes needed to cover the network and the size of the box
defining a finite self-similar exponent. These fundamental properties, which
are shown for the WWW, social, cellular and protein-protein interaction
networks, help to understand the emergence of the scale-free property in
complex networks. They suggest a common self-organization dynamics of diverse
networks at different scales into a critical state and in turn bring together
previously unrelated fields: the statistical physics of complex networks with
renormalization group, fractals and critical phenomena.Comment: 28 pages, 12 figures, more informations at http://www.jamlab.or
IsoRankN: spectral methods for global alignment of multiple protein networks
Motivation: With the increasing availability of large protein–protein interaction networks, the question of protein network alignment is becoming central to systems biology. Network alignment is further delineated into two sub-problems: local alignment, to find small conserved motifs across networks, and global alignment, which attempts to find a best mapping between all nodes of the two networks. In this article, our aim is to improve upon existing global alignment results. Better network alignment will enable, among other things, more accurate identification of functional orthologs across species.
Results: We introduce IsoRankN (IsoRank-Nibble) a global multiple-network alignment tool based on spectral clustering on the induced graph of pairwise alignment scores. IsoRankN outperforms existing algorithms for global network alignment in coverage and consistency on multiple alignments of the five available eukaryotic networks. Being based on spectral methods, IsoRankN is both error tolerant and computationally efficient.National Science Council of Taiwan (NSC-096-2917-I- 002-114)National Science Council of Taiwan (NSC-095-2221-E-001-016-MY3)Fannie and John Hertz Foundatio
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
The adult mammalian heart has poor regenerative capacity. In contrast, the zebrafish heart retains a robust capacity for regeneration into adulthood. These distinct responses are consequences of a differential utilization of evolutionary-conserved gene regulatory networks in the damaged heart. To systematically identify miRNA-dependent networks controlling cardiac repair following injury, we performed comparative gene and miRNA profiling of the cardiac transcriptome in adult mice and zebrafish.
Using an integrated approach, we show that 45 miRNA-dependent networks, involved in critical biological pathways, are differentially modulated in the injured zebrafish vs. mouse hearts. We study, more particularly, the miR-26a-dependent response. Therefore, miR-26a is down-regulated in the fish heart after injury, whereas its expression remains constant in the mouse heart. Targets of miR-26a involve activators of the cell cycle and Ezh2, a component of the polycomb repressive complex 2 (PRC2). Importantly, PRC2 exerts repressive functions on negative regulators of the cell cycle. In cultured neonatal cardiomyocytes, inhibition of miR-26a stimulates, therefore, cardiomyocyte proliferation. Accordingly, miR-26a knockdown prolongs the proliferative window of cardiomyocytes in the post-natal mouse heart.
This novel strategy identifies a series of miRNAs and associated pathways, in particular miR-26a, which represent attractive therapeutic targets for inducing repair in the injured heart
A qualitative continuous model of cellular auxin and brassinosteroid signaling and their crosstalk
Motivation: Hormone pathway interactions are crucial in shaping plant development, such as synergism between the auxin and brassinosteroid pathways in cell elongation. Both hormone pathways have been characterized in detail, revealing several feedback loops. The complexity of this network, combined with a shortage of kinetic data, renders its quantitative analysis virtually impossible at present. Results: As a first step towards overcoming these obstacles, we analyzed the network using a Boolean logic approach to build models of auxin and brassinosteroid signaling, and their interaction. To compare these discrete dynamic models across conditions, we transformed them into qualitative continuous systems, which predict network component states more accurately and can accommodate kinetic data as they become available. To this end, we developed an extension for the SQUAD software, allowing semi-quantitative analysis of network states. Contrasting the developmental output depending on cell type-specific modulators enabled us to identify a most parsimonious model, which explains initially paradoxical mutant phenotypes and revealed a novel physiological feature. Availability: The package SQUADD is freely available via the Bioconductor repository at http://www.bioconductor.org/help/bioc-views/release/bioc/html/SQUADD.html. Contact: [email protected]; [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin
Scale free networks from a Hamiltonian dynamics
Contrary to many recent models of growing networks, we present a model with
fixed number of nodes and links, where it is introduced a dynamics favoring the
formation of links between nodes with degree of connectivity as different as
possible. By applying a local rewiring move, the network reaches equilibrium
states assuming broad degree distributions, which have a power law form in an
intermediate range of the parameters used. Interestingly, in the same range we
find non-trivial hierarchical clustering.Comment: 4 pages, revtex4, 5 figures. v2: corrected statements about
equilibriu
MAR-Mediated transgene integration into permissive chromatin and increased expression by recombination pathway engineering.
Untargeted plasmid integration into mammalian cell genomes remains a poorly understood and inefficient process. The formation of plasmid concatemers and their genomic integration has been ascribed either to non-homologous end-joining (NHEJ) or homologous recombination (HR) DNA repair pathways. However, a direct involvement of these pathways has remained unclear. Here, we show that the silencing of many HR factors enhanced plasmid concatemer formation and stable expression of the gene of interest in Chinese hamster ovary (CHO) cells, while the inhibition of NHEJ had no effect. However, genomic integration was decreased by the silencing of specific HR components, such as Rad51, and DNA synthesis-dependent microhomology-mediated end-joining (SD-MMEJ) activities. Genome-wide analysis of the integration loci and junction sequences validated the prevalent use of the SD-MMEJ pathway for transgene integration close to cellular genes, an effect shared with matrix attachment region (MAR) DNA elements that stimulate plasmid integration and expression. Overall, we conclude that SD-MMEJ is the main mechanism driving the illegitimate genomic integration of foreign DNA in CHO cells, and we provide a recombination engineering approach that increases transgene integration and recombinant protein expression in these cells. Biotechnol. Bioeng. 2017;114: 384-396. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc
Updates in Rhea - an expert curated resource of biochemical reactions.
Rhea (http://www.rhea-db.org) is a comprehensive and non-redundant resource of expert-curated biochemical reactions designed for the functional annotation of enzymes and the description of metabolic networks. Rhea describes enzyme-catalyzed reactions covering the IUBMB Enzyme Nomenclature list as well as additional reactions, including spontaneously occurring reactions, using entities from the ChEBI (Chemical Entities of Biological Interest) ontology of small molecules. Here we describe developments in Rhea since our last report in the database issue of Nucleic Acids Research. These include the first implementation of a simple hierarchical classification of reactions, improved coverage of the IUBMB Enzyme Nomenclature list and additional reactions through continuing expert curation, and the development of a new website to serve this improved dataset
Uncovering the overlapping community structure of complex networks in nature and society
Many complex systems in nature and society can be described in terms of
networks capturing the intricate web of connections among the units they are
made of. A key question is how to interpret the global organization of such
networks as the coexistence of their structural subunits (communities)
associated with more highly interconnected parts. Identifying these a priori
unknown building blocks (such as functionally related proteins, industrial
sectors and groups of people) is crucial to the understanding of the structural
and functional properties of networks. The existing deterministic methods used
for large networks find separated communities, whereas most of the actual
networks are made of highly overlapping cohesive groups of nodes. Here we
introduce an approach to analysing the main statistical features of the
interwoven sets of overlapping communities that makes a step towards uncovering
the modular structure of complex systems. After defining a set of new
characteristic quantities for the statistics of communities, we apply an
efficient technique for exploring overlapping communities on a large scale. We
find that overlaps are significant, and the distributions we introduce reveal
universal features of networks. Our studies of collaboration, word-association
and protein interaction graphs show that the web of communities has non-trivial
correlations and specific scaling properties.Comment: The free academic research software, CFinder, used for the
publication is available at the website of the publication:
http://angel.elte.hu/clusterin
Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling.
Plant growth is strongly influenced by the presence of neighbors that compete for light resources. In response to vegetational shading shade-intolerant plants such as Arabidopsis display a suite of developmental responses known as the shade-avoidance syndrome (SAS). The phytochrome B (phyB) photoreceptor is the major light sensor to mediate this adaptive response. Control of the SAS occurs in part with phyB, which controls protein abundance of phytochrome-interacting factors 4 and 5 (PIF4 and PIF5) directly. The shade-avoidance response also requires rapid biosynthesis of auxin and its transport to promote elongation growth. The identification of genome-wide PIF5-binding sites during shade avoidance revealed that this bHLH transcription factor regulates the expression of a subset of previously identified SAS genes. Moreover our study suggests that PIF4 and PIF5 regulate elongation growth by controlling directly the expression of genes that code for auxin biosynthesis and auxin signaling components
- …
