28,219 research outputs found

    Bicycle-Sharing System Analysis and Trip Prediction

    Full text link
    Bicycle-sharing systems, which can provide shared bike usage services for the public, have been launched in many big cities. In bicycle-sharing systems, people can borrow and return bikes at any stations in the service region very conveniently. Therefore, bicycle-sharing systems are normally used as a short-distance trip supplement for private vehicles as well as regular public transportation. Meanwhile, for stations located at different places in the service region, the bike usages can be quite skewed and imbalanced. Some stations have too many incoming bikes and get jammed without enough docks for upcoming bikes, while some other stations get empty quickly and lack enough bikes for people to check out. Therefore, inferring the potential destinations and arriving time of each individual trip beforehand can effectively help the service providers schedule manual bike re-dispatch in advance. In this paper, we will study the individual trip prediction problem for bicycle-sharing systems. To address the problem, we study a real-world bicycle-sharing system and analyze individuals' bike usage behaviors first. Based on the analysis results, a new trip destination prediction and trip duration inference model will be introduced. Experiments conducted on a real-world bicycle-sharing system demonstrate the effectiveness of the proposed model.Comment: 11 pages, 11 figures, accepted by 2016 IEEE MDM Conferenc

    Dependence of the decoherence of polarization states in phase-damping channels on the frequency spectrum envelope of photons

    Full text link
    We consider the decoherence of photons suffering in phase-damping channels. By exploring the evolutions of single-photon polarization states and two-photon polarization-entangled states, we find that different frequency spectrum envelopes of photons induce different decoherence processes. A white frequency spectrum can lead the decoherence to an ideal Markovian process. Some color frequency spectrums can induce asymptotical decoherence, while, some other color frequency spectrums can make coherence vanish periodically with variable revival amplitudes. These behaviors result from the non-Markovian effects on the decoherence process, which may give rise to a revival of coherence after complete decoherence.Comment: 7 pages, 4 figures, new results added, replaced by accepted versio

    Perturbation theory of von Neumann Entropy

    Full text link
    In quantum information theory, von Neumann entropy plays an important role. The entropies can be obtained analytically only for a few states. In continuous variable system, even evaluating entropy numerically is not an easy task since the dimension is infinite. We develop the perturbation theory systematically for calculating von Neumann entropy of non-degenerate systems as well as degenerate systems. The result turns out to be a practical way of the expansion calculation of von Neumann entropy.Comment: 7 page

    Perturbational approach to the quantum capacity of additive Gaussian quantum channel

    Full text link
    For a quantum channel with additive Gaussian quantum noise, at the large input energy side, we prove that the one shot capacity is achieved by the thermal noise state for all Gaussian state inputs, it is also true for non-Gaussian input in the sense of first order perturbation. For a general case of nn copies input, we show that up to first order perturbation, any non-Gaussian perturbation to the product thermal state input has a less quantum information transmission rate when the input energy tend to infinitive.Comment: 5 page

    Relationship between High-Energy Absorption Cross Section and Strong Gravitational Lensing for Black Hole

    Full text link
    In this paper, we obtain a relation between the high-energy absorption cross section and the strong gravitational lensing for a static and spherically symmetric black hole. It provides us a possible way to measure the high-energy absorption cross section for a black hole from strong gravitational lensing through astronomical observation. More importantly, it allows us to compute the total energy emission rate for high-energy particles emitted from the black hole acting as a gravitational lens. It could tell us the range of the frequency, among which the black hole emits the most of its energy and the gravitational waves are most likely to be observed. We also apply it to the Janis-Newman-Winicour solution. The results suggest that we can test the cosmic censorship hypothesis through the observation of gravitational lensing by the weakly naked singularities acting as gravitational lenses.Comment: 6 pages, 2 figures, improved version, accepted for publication as a Rapid Communication in Physical Review

    Relative entropy of entanglement of a kind of two qubit entangled states

    Full text link
    We in this paper strictly prove that some block diagonalizable two qubit entangled state with six none zero elements reaches its quantum relative entropy entanglement by the a separable state having the same matrix structure. The entangled state comprises local filtering result state as a special case.Comment: 5 page

    Superconducting gap symmetry in BaFe1.9_{1.9}Ni0.1_{0.1}As2_{2} superconductor

    Full text link
    We report on the Andreev spectroscopy and specific heat of high-quality single crystals BaFe1.9_{1.9}Ni0.1_{0.1}As2_{2}. The intrinsic multiple Andreev reflection spectroscopy reveals two anisotropic superconducting gaps \Delta_L \approx 3.2 \textendash 4.5\,meV, \Delta_S \approx 1.2 \textendash 1.6\,meV (the ranges correspond to the minimum and maximum value of the coupling energy in the kxkyk_xk_y-plane). The 25 \textendash 30 \% anisotropy shows the absence of nodes in the superconducting gaps. Using a two-band model with s-wave-like gaps ΔL3.2\Delta_L \approx 3.2\,meV and ΔS1.6\Delta_S \approx 1.6\,meV, the temperature dependence of the electronic specific heat can be well described. A linear magnetic field dependence of the low-temperature specific heat offers a further support of s-wave type of the order parameter. We find that a d-wave or single-gap BCS theory under the weak-coupling approach cannot describe our experiments.Comment: 12 pages, 5 figure
    corecore