1,080 research outputs found

    A T-odd observable sensitive to CP violating phases in squark decay

    Get PDF
    We present a new observable sensitive to a certain combination of CP violating phases in supersymmetric extensions of the Standard Model, viz. a triple product of momenta in the cascade decay of a heavy squark via an on-shell neutralino and off-shell slepton. We investigate the regions of parameter space in which the signal is strong enough to be detectable at the LHC with (102103)/sin2(2Δϕ)\sim \bigl(10^2-10^3\bigr)/\sin^2(2\Delta\phi) identified events, where Δϕ\Delta\phi is a certain combination of phases in the MSSM presented in the text.Comment: Several references adde

    Complete eigenstates of identical qubits arranged in regular polygons

    Full text link
    We calculate the energy eigenvalues and eigenstates corresponding to coherent single and multiple excitations of an array of N identical qubits or two-level atoms (TLA's) arranged on the vertices of a regular polygon. We assume only that the coupling occurs via an exchange interaction which depends on the separation between the qubits. We include the interactions between all pairs of qubits, and our results are valid for arbitrary distances relative to the radiation wavelength. To illustrate the usefulness of these states, we plot the distance dependence of the decay rates of the n=2 (biexciton) eigenstates of an array of 4 qubits, and tabulate the biexciton eigenvalues and eigenstates, and absorption frequencies, line widths, and relative intensities for polygons consisting of N=2,...,9 qubits in the long-wavelength limit.Comment: Added a figure showing how these results can be used to compute deviations from "equal collective decoherence" approximation

    Protein-DNA charge transport: Redox activation of a DNA repair protein by guanine radical

    Get PDF
    DNA charge transport (CT) chemistry provides a route to carry out oxidative DNA damage from a distance in a reaction that is sensitive to DNA mismatches and lesions. Here, DNA-mediated CT also leads to oxidation of a DNA-bound base excision repair enzyme, MutY. DNA-bound Ru(III), generated through a flash/quench technique, is found to promote oxidation of the [4Fe-4S](2+) cluster of MutY to [4Fe-4S](3+) and its decomposition product [3Fe-4S](1+). Flash/quench experiments monitored by EPR spectroscopy reveal spectra with g = 2.08, 2.06, and 2.02, characteristic of the oxidized clusters. Transient absorption spectra of poly(dGC) and [Ru(phen)(2)dppz](3+) (dppz = dipyridophenazine), generated in situ, show an absorption characteristic of the guanine radical that is depleted in the presence of MutY with formation instead of a long-lived species with an absorption at 405 nm; we attribute this absorption also to formation of the oxidized [4Fe-4S](3+) and [3Fe4S](1+) clusters. In ruthenium-tethered DNA assemblies, oxidative damage to the 5'-G of a 5'-GG-3' doublet is generated from a distance but this irreversible damage is inhibited by MutY and instead EPR experiments reveal cluster oxidation. With ruthenium-tethered assemblies containing duplex versus single-stranded regions, MutY oxidation is found to be mediated by the DNA duplex, with guanine radical as an intermediate oxidant; guanine radical formation facilitates MutY oxidation. A model is proposed for the redox activation of DNA repair proteins through DNA CT, with guanine radicals, the first product under oxidative stress, in oxidizing the DNA-bound repair proteins, providing the signal to stimulate DNA repair

    Total column CO_2 measurements at Darwin, Australia – site description and calibration against in situ aircraft profiles

    Get PDF
    An automated Fourier Transform Spectroscopic (FTS) solar observatory was established in Darwin, Australia in August 2005. The laboratory is part of the Total Carbon Column Observing Network, and measures atmospheric column abundances of CO_2 and O_2 and other gases. Measured CO_2 columns were calibrated against integrated aircraft profiles obtained during the TWP-ICE campaign in January–February 2006, and show good agreement with calibrations for a similar instrument in Park Falls, Wisconsin. A clear-sky low airmass relative precision of 0.1% is demonstrated in the CO2 and O2 retrieved column-averaged volume mixing ratios. The 1% negative bias in the FTS X_(CO_2) relative to the World Meteorological Organization (WMO) calibrated in situ scale is within the uncertainties of the NIR spectroscopy and analysis

    RECAST: Extending the Impact of Existing Analyses

    Full text link
    Searches for new physics by experimental collaborations represent a significant investment in time and resources. Often these searches are sensitive to a broader class of models than they were originally designed to test. We aim to extend the impact of existing searches through a technique we call 'recasting'. After considering several examples, which illustrate the issues and subtleties involved, we present RECAST, a framework designed to facilitate the usage of this technique.Comment: 13 pages, 4 figure

    A Letter of Intent to Install a milli-charged Particle Detector at LHC P5

    Full text link
    In this LOI we propose a dedicated experiment that would detect "milli-charged" particles produced by pp collisions at LHC Point 5. The experiment would be installed during LS2 in the vestigial drainage gallery above UXC and would not interfere with CMS operations. With 300 fb1^{-1} of integrated luminosity, sensitivity to a particle with charge O(103) e\mathcal{O}(10^{-3})~e can be achieved for masses of O(1)\mathcal{O}(1) GeV, and charge O(102) e\mathcal{O}(10^{-2})~e for masses of O(10)\mathcal{O}(10) GeV, greatly extending the parameter space explored for particles with small charge and masses above 100 MeV.Comment: 19 pages, 7 figure

    The Littlest Higgs in Anti-de Sitter Space

    Full text link
    We implement the SU(5)/SO(5) littlest Higgs theory in a slice of 5D Anti-de Sitter space bounded by a UV brane and an IR brane. In this model, there is a bulk SU(5) gauge symmetry that is broken to SO(5) on the IR brane, and the Higgs boson is contained in the Goldstones from this breaking. All of the interactions on the IR brane preserve the global symmetries that protect the Higgs mass, but a radiative potential is generated through loops that stretch to the UV brane where there are explicit SU(5) violating boundary conditions. Like the original littlest Higgs, this model exhibits collective breaking in that two interactions must be turned on in order to generate a Higgs potential. In AdS space, however, collective breaking does not appear in coupling constants directly but rather in the choice of UV brane boundary conditions. We match this AdS construction to the known low energy structure of the littlest Higgs and comment on some of the tensions inherent in the AdS construction. We calculate the 5D Coleman-Weinberg effective potential for the Higgs and find that collective breaking is manifest. In a simplified model with only the SU(2) gauge structure and the top quark, the physical Higgs mass can be of order 200 GeV with no considerable fine tuning (25%). We sketch a more realistic model involving the entire gauge and fermion structure that also implements T-parity, and we comment on the tension between T-parity and flavor structure.Comment: 42 pages, 7 figures, 3 tables; v2: minor rewording, JHEP format; v3: to match JHEP versio

    CoGeNT Interpretations

    Full text link
    Recently, the CoGeNT experiment has reported events in excess of expected background. We analyze dark matter scenarios which can potentially explain this signal. Under the standard case of spin independent scattering with equal couplings to protons and neutrons, we find significant tensions with existing constraints. Consistency with these limits is possible if a large fraction of the putative signal events is coming from an additional source of experimental background. In this case, dark matter recoils cannot be said to explain the excess, but are consistent with it. We also investigate modifications to dark matter scattering that can evade the null experiments. In particular, we explore generalized spin independent couplings to protons and neutrons, spin dependent couplings, momentum dependent scattering, and inelastic interactions. We find that some of these generalizations can explain most of the CoGeNT events without violation of other constraints. Generalized couplings with some momentum dependence, allows further consistency with the DAMA modulation signal, realizing a scenario where both CoGeNT and DAMA signals are coming from dark matter. A model with dark matter interacting and annihilating into a new light boson can realize most of the scenarios considered.Comment: 24 pages, 12 figs, v2: published version, some discussions clarifie

    Non-Abelian Dark Sectors and Their Collider Signatures

    Get PDF
    Motivated by the recent proliferation of observed astrophysical anomalies, Arkani-Hamed et al. have proposed a model in which dark matter is charged under a non-abelian "dark" gauge symmetry that is broken at ~ 1 GeV. In this paper, we present a survey of concrete models realizing such a scenario, followed by a largely model-independent study of collider phenomenology relevant to the Tevatron and the LHC. We address some model building issues that are easily surmounted to accommodate the astrophysics. While SUSY is not necessary, we argue that it is theoretically well-motivated because the GeV scale is automatically generated. Specifically, we propose a novel mechanism by which mixed D-terms in the dark sector induce either SUSY breaking or a super-Higgs mechanism precisely at a GeV. Furthermore, we elaborate on the original proposal of Arkani-Hamed et al. in which the dark matter acts as a messenger of gauge mediation to the dark sector. In our collider analysis we present cross-sections for dominant production channels and lifetime estimates for primary decay modes. We find that dark gauge bosons can be produced at the Tevatron and the LHC, either through a process analogous to prompt photon production or through a rare Z decay channel. Dark gauge bosons will decay back to the SM via "lepton jets" which typically contain >2 and as many as 8 leptons, significantly improving their discovery potential. Since SUSY decays from the MSSM will eventually cascade down to these lepton jets, the discovery potential for direct electroweak-ino production may also be improved. Exploiting the unique kinematics, we find that it is possible to reconstruct the mass of the MSSM LSP. We also present decay channels with displaced vertices and multiple leptons with partially correlated impact parameters.Comment: 44 pages, 25 figures, version published in JHE
    corecore