35,083 research outputs found
Large-Scale MIMO versus Network MIMO for Multicell Interference Mitigation
This paper compares two important downlink multicell interference mitigation
techniques, namely, large-scale (LS) multiple-input multiple-output (MIMO) and
network MIMO. We consider a cooperative wireless cellular system operating in
time-division duplex (TDD) mode, wherein each cooperating cluster includes
base-stations (BSs), each equipped with multiple antennas and scheduling
single-antenna users. In an LS-MIMO system, each BS employs antennas not
only to serve its scheduled users, but also to null out interference caused to
the other users within the cooperating cluster using zero-forcing (ZF)
beamforming. In a network MIMO system, each BS is equipped with only
antennas, but interference cancellation is realized by data and channel state
information exchange over the backhaul links and joint downlink transmission
using ZF beamforming. Both systems are able to completely eliminate
intra-cluster interference and to provide the same number of spatial degrees of
freedom per user. Assuming the uplink-downlink channel reciprocity provided by
TDD, both systems are subject to identical channel acquisition overhead during
the uplink pilot transmission stage. Further, the available sum power at each
cluster is fixed and assumed to be equally distributed across the downlink
beams in both systems. Building upon the channel distribution functions and
using tools from stochastic ordering, this paper shows, however, that from a
performance point of view, users experience better quality of service, averaged
over small-scale fading, under an LS-MIMO system than a network MIMO system.
Numerical simulations for a multicell network reveal that this conclusion also
holds true with regularized ZF beamforming scheme. Hence, given the likely
lower cost of adding excess number of antennas at each BS, LS-MIMO could be the
preferred route toward interference mitigation in cellular networks.Comment: 13 pages, 7 figures; IEEE Journal of Selected Topics in Signal
Processing, Special Issue on Signal Processing for Large-Scale MIMO
Communication
Reply to [arXiv:1105.5147] "Are GRB 090423 and Similar Bursts due to Superconducting Cosmic Strings?"
The GRB outflow driven by superconducting cosmic strings is likely to be an
arc rather than a usually-considered spherical cap. In such a case, the
afterglows of the cosmic string GRBs could be basically consistent with the
observation of the high-redshift GRBs.Comment: 2 pages, 1 figure, to appear in Phys. Rev. Let
Investigation of Micro Porosity Sintered wick in Vapor Chamber for Fan Less Design
Micro Porosity Sintered wick is made from metal injection molding processes,
which provides a wick density with micro scale. It can keep more than 53 %
working fluid inside the wick structure, and presents good pumping ability on
working fluid transmission by fine infiltrated effect. Capillary pumping
ability is the important factor in heat pipe design, and those general
applications on wick structure are manufactured with groove type or screen
type. Gravity affects capillary of these two types more than a sintered wick
structure does, and mass heat transfer through vaporized working fluid
determines the thermal performance of a vapor chamber. First of all, high
density of porous wick supports high transmission ability of working fluid. The
wick porosity is sintered in micro scale, which limits the bubble size while
working fluid vaporizing on vapor section. Maximum heat transfer capacity
increases dramatically as thermal resistance of wick decreases. This study on
permeability design of wick structure is 0.5 - 0.7, especially permeability (R)
= 0.5 can have the best performance, and its heat conductivity is 20 times to a
heat pipe with diameter (Phi) = 10mm. Test data of this vapor chamber shows
thermal performance increases over 33 %.Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
Multilabel Consensus Classification
In the era of big data, a large amount of noisy and incomplete data can be
collected from multiple sources for prediction tasks. Combining multiple models
or data sources helps to counteract the effects of low data quality and the
bias of any single model or data source, and thus can improve the robustness
and the performance of predictive models. Out of privacy, storage and bandwidth
considerations, in certain circumstances one has to combine the predictions
from multiple models or data sources to obtain the final predictions without
accessing the raw data. Consensus-based prediction combination algorithms are
effective for such situations. However, current research on prediction
combination focuses on the single label setting, where an instance can have one
and only one label. Nonetheless, data nowadays are usually multilabeled, such
that more than one label have to be predicted at the same time. Direct
applications of existing prediction combination methods to multilabel settings
can lead to degenerated performance. In this paper, we address the challenges
of combining predictions from multiple multilabel classifiers and propose two
novel algorithms, MLCM-r (MultiLabel Consensus Maximization for ranking) and
MLCM-a (MLCM for microAUC). These algorithms can capture label correlations
that are common in multilabel classifications, and optimize corresponding
performance metrics. Experimental results on popular multilabel classification
tasks verify the theoretical analysis and effectiveness of the proposed
methods
Temperature-dependent Mollow triplet spectra from a single quantum dot: Rabi frequency renormalisation and sideband linewidth insensitivity
We investigate temperature-dependent resonance fluorescence spectra obtained
from a single self-assembled quantum dot. A decrease of the Mollow triplet
sideband splitting is observed with increasing temperature, an effect we
attribute to a phonon-induced renormalisation of the driven dot Rabi frequency.
We also present first evidence for a non-perturbative regime of phonon
coupling, in which the expected linear increase in sideband linewidth as a
function of temperature is cancelled by the corresponding reduction in Rabi
frequency. These results indicate that dephasing in semiconductor quantum dots
may be less sensitive to changes in temperature than expected from a standard
weak-coupling analysis of phonon effects.Comment: Close to published version, new figure and minor changes to the text.
5 pages, 3 figure
- …
