2,825 research outputs found

    A variationally computed line list for hot NH3

    Get PDF
    We present 'BYTe', a comprehensive 'hot' line list for the ro-vibrational transitions of ammonia, 14NH3, in its ground electronic state. This line list has been computed variationally using the program suite TROVE, a new spectroscopically-determined potential energy surface and an ab initio dipole moment surface. BYTe, is designed to be used at all temperatures up to 1500K. It comprises 1137650964 transitions in the frequency range from 0 to 12000 cm-1, constructed from 1366519 energy levels below 18000 cm-1 having J values below 36. Comparisons with laboratory data confirm the accuracy of the line list which is suitable for modelling a variety of astrophysical problems including the atmospheres of extrasolar planets and brown dwarfs.Comment: the paper has been submitted to MNRA

    MARVEL analysis of the measured high-resolution rovibronic spectra of the calcium monohydroxide radical (CaOH)

    Full text link
    The calcium monohydroxide radical (CaOH) is an important astrophysical molecule relevant to cool stars and rocky exoplanets, amongst other astronomical environments. Here, we present a consistent set of highly accurate rovibronic (rotation-vibration-electronic) energy levels for the five lowest electronic states (X~2Σ+\tilde{X}\,^2\Sigma^+, A~2Π\tilde{A}\,^2\Pi, B~2Σ+\tilde{B}\,^2\Sigma^+, C~2Δ\tilde{C}\,^2\Delta, D~2Σ+\tilde{D}\,^2\Sigma^+) of CaOH. A comprehensive analysis of the published spectroscopic literature on this system has allowed 1955 energy levels to be determined from 3204 rovibronic experimental transitions, all with unique quantum number labelling and measurement uncertainties. The dataset covers rotational excitation up to J=62.5J=62.5 for molecular states below 29\,000~cm1^{-1}. The analysis was performed using the MARVEL algorithm, which is a robust procedure based on the theory of spectroscopic networks. The dataset provided will significantly aid future interstellar, circumstellar and atmospheric detections of CaOH, as well as assisting in the design of efficient laser cooling schemes in ultracold molecule research and precision tests of fundamental physics

    Hydrodynamic model for electron-hole plasma in graphene

    Full text link
    We propose a hydrodynamic model describing steady-state and dynamic electron and hole transport properties of graphene structures which accounts for the features of the electron and hole spectra. It is intended for electron-hole plasma in graphene characterized by high rate of intercarrier scattering compared to external scattering (on phonons and impurities), i.e., for intrinsic or optically pumped (bipolar plasma), and gated graphene (virtually monopolar plasma). We demonstrate that the effect of strong interaction of electrons and holes on their transport can be treated as a viscous friction between the electron and hole components. We apply the developed model for the calculations of the graphene dc conductivity, in particular, the effect of mutual drag of electrons and holes is described. The spectra and damping of collective excitations in graphene in the bipolar and monopolar limits are found. It is shown that at high gate voltages and, hence, at high electron and low hole densities (or vice-versa), the excitations are associated with the self-consistent electric field and the hydrodynamic pressure (plasma waves). In intrinsic and optically pumped graphene, the waves constitute quasineutral perturbations of the electron and hole densities (electron-hole sound waves) with the velocity being dependent only on the fundamental graphene constants.Comment: 11 pages, 6 figure

    Effect of plasma resonances on dynamic characteristics of double graphene-layer optical modulator

    Full text link
    We analyze the dynamic operation of an optical modulator based on double graphene-layer(GL) structure utilizing the variation of the GL absorption due to the electrically controlled Pauli blocking effect. The developed device model yields the dependences of the modulation depth on the control voltage and the modulation frequency. The excitation of plasma oscillations in double-GL structure can result in the resonant increase of the modulation depth, when the modulation frequency approaches the plasma frequency, which corresponds to the terahertz frequency for the typical parameter values.Comment: 8 pages, 4 figure

    Hybrid variation-perturbation method for calculating rovibrational energy levels of polyatomic molecules

    Full text link
    A procedure for calculation of rotation-vibration states of medium sized molecules is presented. It combines the advantages of variational calculations and perturbation theory. The vibrational problem is solved by diagonalizing a Hamiltonian matrix, which is partitioned into two sub-blocks. The first, smaller sub-block includes matrix elements with the largest contribution to the energy levels targeted in the calculations. The second, larger sub-block comprises those basis states which have little effect on these energy levels. Numerical perturbation theory, implemented as a Jacobi rotation, is used to compute the contributions from the matrix elements of the second sub-block. Only the first sub-block needs to be stored in memory and diagonalized. Calculations of the vibrational-rotational energy levels also employ a partitioning of the Hamiltonian matrix into sub-blocks, each of which corresponds either to a single vibrational state or a set of resonating vibrational states, with all associated rotational levels. Physically, this partitioning is efficient when the Coriolis coupling between different vibrational states is small. Numerical perturbation theory is used to include the cross-contributions from different vibrational states. Separate individual sub-blocks are then diagonalized, replacing the diagonalization of a large Hamiltonian matrix with a number of small matrix diagonalizations. Numerical examples show that the proposed hybrid variational-perturbation method greatly speeds up the variational procedure without significant loss of precision for both vibrational-rotational energy levels and transition intensities. The hybrid scheme can be used for accurate nuclear motion calculations on molecules with up to 15 atoms on currently available computers.Comment: Molecular Physics (Handy Special Issue), in pres

    ExoMol molecular line lists - XVII The rotation-vibration spectrum of hot SO3_3

    Get PDF
    Sulphur trioxide (SO3_3) is a trace species in the atmospheres of the Earth and Venus, as well as well as being an industrial product and an environmental pollutant. A variational line list for 32^{32}S16^{16}O3_{3}, named UYT2, is presented containing 21 billion vibration-rotation transitions. UYT2 can be used to model infrared spectra of SO3_3 at wavelengths longwards of 2 μ\mum (ν<5000\nu < 5000 cm1^{-1}) for temperatures up to 800 K. Infrared absorption cross sections are also recorded at 300 and 500 C are used to validate the UYT2 line list. The intensities in UYT2 are scaled to match the measured cross sections. The line list is made available in electronic form as supplementary data to this article and at \url{www.exomol.com}.Comment: 15 pages, 10 figures, 9 tables MNRAS submitte

    Collective modes of two-dimensional classical Coulomb fluids

    Get PDF
    Molecular dynamics simulations have been performed to investigate in detail collective modes spectra of two-dimensional Coulomb fluids in a wide range of coupling. The obtained dispersion relations are compared with theoretical approaches based on quasi-crystalline approximation (QCA), also known as the quasi-localized charge approximation (QLCA) in the plasma-related context. An overall satisfactory agreement between theory and simulations is documented for the longitudinal mode at moderate coupling and in the long-wavelength domain at strong coupling. For the transverse mode, satisfactory agreement in the long-wavelength domain is only reached at very strong coupling, when the cutoff wave-number below which shear waves cannot propagate becomes small. The dependence of the cutoff wave-number for shear waves on the coupling parameter is obtained.Comment: 10 pages, 6 figure
    corecore