258 research outputs found
Damage growth in fibre bundle models with localized load sharing and environmentally-assisted ageing
Microwave-assisted cross-polarization of nuclear spin ensembles from optically-pumped nitrogen-vacancy centers in diamond
The ability to optically initialize the electronic spin of the
nitrogen-vacancy (NV) center in diamond has long been considered a valuable
resource to enhance the polarization of neighboring nuclei, but efficient
polarization transfer to spin species outside the diamond crystal has proven
challenging. Here we demonstrate variable-magnetic-field, microwave-enabled
cross-polarization from the NV electronic spin to protons in a model viscous
fluid in contact with the diamond surface. Slight changes in the
cross-relaxation rate as a function of the wait time between successive
repetitions of the transfer protocol suggest slower molecular diffusion near
the diamond surface compared to that in bulk, an observation consistent with
present models of the microscopic structure of a fluid close to a solid
interface.Comment: 7 pages, 4 figure
Strain bursts in plastically deforming Molybdenum micro- and nanopillars
Plastic deformation of micron and sub-micron scale specimens is characterized
by intermittent sequences of large strain bursts (dislocation avalanches) which
are separated by regions of near-elastic loading. In the present investigation
we perform a statistical characterization of strain bursts observed in
stress-controlled compressive deformation of monocrystalline Molybdenum
micropillars. We characterize the bursts in terms of the associated elongation
increments and peak deformation rates, and demonstrate that these quantities
follow power-law distributions that do not depend on specimen orientation or
stress rate. We also investigate the statistics of stress increments in between
the bursts, which are found to be Weibull distributed and exhibit a
characteristic size effect. We discuss our findings in view of observations of
deformation bursts in other materials, such as face-centered cubic and
hexagonal metals.Comment: 14 pages, 8 figures, submitted to Phil Ma
Depinning transition of dislocation assemblies: pileup and low-angle grain boundary
We investigate the depinning transition occurring in dislocation assemblies.
In particular, we consider the cases of regularly spaced pileups and low angle
grain boundaries interacting with a disordered stress landscape provided by
solute atoms, or by other immobile dislocations present in non-active slip
systems. Using linear elasticity, we compute the stress originated by small
deformations of these assemblies and the corresponding energy cost in two and
three dimensions. Contrary to the case of isolated dislocation lines, which are
usually approximated as elastic strings with an effective line tension, the
deformations of a dislocation assembly cannot be described by local elastic
interactions with a constant tension or stiffness. A nonlocal elastic kernel
results as a consequence of long range interactions between dislocations. In
light of this result, we revise statistical depinning theories and find novel
results for Zener pinning in grain growth. Finally, we discuss the scaling
properties of the dynamics of dislocation assemblies and compare theoretical
results with numerical simulations.Comment: 13 pages, 8 figure
Propagating compaction bands in confined compression of snow
Some materials are strong in response to a slowly applied deformation, yet weak when subject to rapid deformations—a materials property known as strain-rate softening1. Snow exhibits such behaviour: it is comparatively strong at low deformation rates, where it is quasi-plastic, but weak at high rates, where it deforms in a quasi-brittle manner2. During deformation, strain-rate-softening materials ranging from metals3, 4 to micellar systems5 exhibit complex spatio-temporal deformation patterns, including regular or chaotic deformation-rate oscillations and travelling deformation waves6. Here we report a systematic investigation of such phenomena in snow and show that snow can deform with the formation and propagation of localized deformation bands accompanied by oscillations of the driving force. We propose a model that accounts for these observations. Our findings demonstrate that in snow, strain localization can occur even in initially homogeneous samples deforming under homogeneous loads
Yielding and irreversible deformation below the microscale: Surface effects and non-mean-field plastic avalanches
Nanoindentation techniques recently developed to measure the mechanical
response of crystals under external loading conditions reveal new phenomena
upon decreasing sample size below the microscale. At small length scales,
material resistance to irreversible deformation depends on sample morphology.
Here we study the mechanisms of yield and plastic flow in inherently small
crystals under uniaxial compression. Discrete structural rearrangements emerge
as series of abrupt discontinuities in stress-strain curves. We obtain the
theoretical dependence of the yield stress on system size and geometry and
elucidate the statistical properties of plastic deformation at such scales. Our
results show that the absence of dislocation storage leads to crucial effects
on the statistics of plastic events, ultimately affecting the universal scaling
behavior observed at larger scales.Comment: Supporting Videos available at
http://dx.plos.org/10.1371/journal.pone.002041
Depinning transition of dislocation assemblies: pileup and low-angle grain boundary
We investigate the depinning transition occurring in dislocation assemblies.
In particular, we consider the cases of regularly spaced pileups and low angle
grain boundaries interacting with a disordered stress landscape provided by
solute atoms, or by other immobile dislocations present in non-active slip
systems. Using linear elasticity, we compute the stress originated by small
deformations of these assemblies and the corresponding energy cost in two and
three dimensions. Contrary to the case of isolated dislocation lines, which are
usually approximated as elastic strings with an effective line tension, the
deformations of a dislocation assembly cannot be described by local elastic
interactions with a constant tension or stiffness. A nonlocal elastic kernel
results as a consequence of long range interactions between dislocations. In
light of this result, we revise statistical depinning theories and find novel
results for Zener pinning in grain growth. Finally, we discuss the scaling
properties of the dynamics of dislocation assemblies and compare theoretical
results with numerical simulations.Comment: 13 pages, 8 figure
Functionalised metal-organic frameworks: a novel approach to stabilising single metal atoms
We have investigated the potential of metal-organic frameworks for immobilising single atoms of transition metals using a model system of Pd supported on NH2-MIL-101(Cr). Our Transmission Electron Microscopy and in-situ Raman spectroscopy results give evidence for the first time that functionalised metal-organic frameworks may support, isolate and stabilise single atoms of palladium. Using Thermal Desorption Spectroscopy we were able to evaluate the proportion of single Pd atoms. Furthermore, in a combined theoretical-experimental approach, we show that the H-H bonds in a H2 molecule elongate by over 15% through the formation of a complex with single atoms of Pd. Such deformation would affect any hydrogenation reaction and thus the single atoms supported on metal-organic frameworks may become promising single atom catalysts in the future
- …
