511 research outputs found

    A system for monitoring NO2 emissions from biomass burning by using GOME and ATSR-2 data

    Get PDF
    In this paper, we propose a system for monitoring abnormal NO2 emissions in troposphere by using remote-sensing sensors. In particular, the system aims at estimating the amount of NO2 resulting from biomass burning by exploiting the synergies between the GOME and the ATSR-2 sensors mounted on board of the ERS-2 satellite. Two different approaches to the estimation of NO2 are proposed: the former, which is the simplest one, assumes a linear relationship between the GOME and ATSR-2 measurements and the NO2 concentration. The latter exploits a nonlinear and nonparametric method based on a radial basis function (RBF) neural network. The architecture of such a network is defined in order to retrieve the values of NO2 concentration on the basis of the GOME and ATSR-2 measurements, as well as of other ancillary input parameters. Experimental results, obtained on a real data set, confirm the effectiveness of the proposed system, which represents a promising tool for operational applications

    miR-9 Acts as an OncomiR in Prostate Cancer through Multiple Pathways That Drive Tumour Progression and Metastasis

    Get PDF
    Identification of dysregulated microRNAs (miRNAs) in prostate cancer is critical not only for diagnosis, but also differentiation between the aggressive and indolent forms of the disease. miR-9 was identified as an oncomiR through both miRNA panel RT-qPCR as well as high-throughput sequencing analysis of the human P69 prostate cell line as compared to its highly tumorigenic and metastatic subline M12, and found to be consistently upregulated in other prostate cell lines including DU-145 and PC3. While miR-9 has been characterized as dysregulated either as an oncomiR or tumour suppressor in a variety of other cancers including breast, ovarian, and nasopharyngeal carcinomas, it has not been previously evaluated and proven as an oncomiR in prostate cancer. miR-9 was confirmed an oncomiR when found to be overexpressed in tumour tissue as compared to adjacent benign glandular epithelium through laser-capture microdissection of radical prostatectomy biopsies. Inhibition of miR-9 resulted in reduced migratory and invasive potential of the M12 cell line, and reduced tumour growth and metastases in male athymic nude mice. Analysis showed that miR-9 targets e-cadherin and suppressor of cytokine signalling 5 (SOCS5), but not NF-ĸB mRNA. Expression of these proteins was shown to be affected by modulation in expression of miR-9

    Acquired resistance to oxaliplatin is not directly associated with increased resistance to DNA damage in SK-N-ASrOXALI4000, a newly established oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS

    Get PDF
    The formation of acquired drug resistance is a major reason for the failure of anti-cancer therapies after initial response. Here, we introduce a novel model of acquired oxaliplatin resistance, a sub-line of the non-MYCN-amplified neuroblastoma cell line SK-N-AS that was adapted to growth in the presence of 4000 ng/mL oxaliplatin (SK-N-ASrOXALI4000). SK-N-ASrOXALI4000 cells displayed enhanced chromosomal aberrations compared to SK-N-AS, as indicated by 24-chromosome fluorescence in situ hybridisation. Moreover, SK-N-ASrOXALI4000 cells were resistant not only to oxaliplatin but also to the two other commonly used anti-cancer platinum agents cisplatin and carboplatin. SK-N-ASrOXALI4000 cells exhibited a stable resistance phenotype that was not affected by culturing the cells for 10 weeks in the absence of oxaliplatin. Interestingly, SK-N-ASrOXALI4000 cells showed no cross resistance to gemcitabine and increased sensitivity to doxorubicin and UVC radiation, alternative treatments that like platinum drugs target DNA integrity. Notably, UVC-induced DNA damage is thought to be predominantly repaired by nucleotide excision repair and nucleotide excision repair has been described as the main oxaliplatin-induced DNA damage repair system. SK-N-ASrOXALI4000 cells were also more sensitive to lysis by influenza A virus, a candidate for oncolytic therapy, than SK-N-AS cells. In conclusion, we introduce a novel oxaliplatin resistance model. The oxaliplatin resistance mechanisms in SK-N-ASrOXALI4000 cells appear to be complex and not to directly depend on enhanced DNA repair capacity. Models of oxaliplatin resistance are of particular relevance since research on platinum drugs has so far predominantly focused on cisplatin and carboplatin

    The Pennsylvania Dutchman Vol. 8, No. 1

    Get PDF
    ● The Summer House ● Drinks in Dutchland ● Yesteryear in Dutchland ● Moshey and Bellyguts ● Rise of Interest in Dutch Antiques ● Diaper Lore ● Lititz ● Witchcraft in Cow and Horse ● Dorothy Kalbach ● Plain Dutch and Gay Dutch ● Dialect Folksay ● Pennsylvania Dutch Pioneers ● About the Authors ● What\u27s New in Dutchlandhttps://digitalcommons.ursinus.edu/dutchmanmag/1008/thumbnail.jp

    A Peer-reviewed Newspaper About_ Machine Feeling

    Get PDF
    On the ability of technologies to capture and structure feelings and experiences that are active, in flux, and situated in the present. Publication resulting from research workshop at CRASSH, University of Cambridge, organised in collaboration with CRASSH, University of Cambridge and transmediale festival for art and digital culture, Berlin

    Fabrication of nanometer size photoresist wire patterns with a silver nanocrystal shadowmask

    Get PDF
    In this article, we present a new method for fabricating precisely defined nanometer scale photoresist wire patterns. The Langmuir technique was utilized to form high aspect ratio lamellae, or wire patterns, of Ag nanocrystals at the air/water interface, and these patterns were transferred onto resist-coated substrates as a Langmuir–Schaeffer film and as a shadowmask. The wire patterns were transferred to the photoresist material by spatially selective electron beam exposure on the Ag nanocrystal wire shadowmask. Monte Carlo simulation was done to estimate the electron stopping power for the Ag nanocrystal shadowmask at low voltage

    TROPOMI tropospheric ozone column data: geophysical assessment and comparison to ozonesondes, GOME-2B and OMI

    Get PDF
    Ozone in the troposphere affects humans and ecosystems as a pollutant and as a greenhouse gas. Observing, understanding and modelling this dual role, as well as monitoring effects of international regulations on air quality and climate change, however, challenge measurement systems to operate at opposite ends of the spatio-temporal scale ladder. Aboard the ESA/EU Copernicus Sentinel-5 Precursor (S5P) satellite launched in October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) aspires to take the next leap forward by measuring ozone and its precursors at unprecedented horizontal resolution until at least the mid-2020s. In this work, we assess the quality of TROPOMI's first release (V01.01.05–08) of tropical tropospheric ozone column (TrOC) data. Derived with the convective cloud differential (CCD) method, TROPOMI daily TrOC data represent the 3 d moving mean ozone column between the surface and 270 hPa under clear-sky conditions gridded at 0.5∘ latitude by 1∘ longitude resolution. Comparisons to almost 2 years of co-located SHADOZ ozonesonde and satellite data (Aura OMI and MetOp-B GOME-2) conclude to TROPOMI biases between −0.1 and +2.3 DU (<+13 %) when averaged over the tropical belt. The field of the bias is essentially uniform in space (deviations <1 DU) and stable in time at the 1.5–2.5 DU level. However, the record is still fairly short, and continued monitoring will be key to clarify whether observed patterns and stability persist, alter behaviour or disappear. Biases are partially due to TROPOMI and the reference data records themselves, but they can also be linked to systematic effects of the non-perfect co-locations. Random uncertainty due to co-location mismatch contributes considerably to the 2.6–4.6 DU (∼14 %–23 %) statistical dispersion observed in the difference time series. We circumvent part of this problem by employing the triple co-location analysis technique and infer that TROPOMI single-measurement precision is better than 1.5–2.5 DU (∼8 %–13 %), in line with uncertainty estimates reported in the data files. Hence, the TROPOMI precision is judged to be 20 %–25 % better than for its predecessors OMI and GOME-2B, while sampling at 4 times better spatial resolution and almost 2 times better temporal resolution. Using TROPOMI tropospheric ozone columns at maximal resolution nevertheless requires consideration of correlated errors at small scales of up to 5 DU due to the inevitable interplay of satellite orbit and cloud coverage. Two particular types of sampling error are investigated, and we suggest how these can be identified or remedied. Our study confirms that major known geophysical patterns and signals of the tropical tropospheric ozone field are imprinted in TROPOMI's 2-year data record. These include the permanent zonal wave-one pattern, the pervasive annual and semiannual cycles, the high levels of ozone due to biomass burning around the Atlantic basin, and enhanced convective activity cycles associated with the Madden–Julian Oscillation over the Indo-Pacific warm pool. TROPOMI's combination of higher precision and higher resolution reveals details of these patterns and the processes involved, at considerably smaller spatial and temporal scales and with more complete coverage than contemporary satellite sounders. If the accuracy of future TROPOMI data proves to remain stable with time, these hold great potential to be included in Climate Data Records, as well as serve as a travelling standard to interconnect the upcoming constellation of air quality satellites in geostationary and low Earth orbits
    corecore