353 research outputs found
Study of permeability characteristics of membranes Quarterly reports, 9 Nov. 1967 - 9 Apr. 1968
Permeability characteristics and transport properties of membranes for salt water conversion, and experiment design
Study of permeability characteristics of membranes Quarterly report, 9 Feb. - 9 May 1969
Permeability characteristics of membrane
Study of permeability characteristics of membranes Quarterly report, 9 May - 9 Aug. 1969
Demineralizing gear pump system with mixed bed ion exchange columns for salt and volume transport experimen
Study of permeability characteristics of membranes Quarterly progress report, 9 Apr. - 9 Aug. 1968
Electrochemical cell constructed to measure membrane transport propertie
Biosynthesis of Mitochondrial Porin and Insertion into the Outer Mitochondrial Membrane of Neuruspora crassa
Mitochondrial porin, the major protein of the outer mitochondrial membrane is synthesized by free cytoplasmic polysomes. The apparent molecular weight of the porin synthesized in homologous or heterologous cell-free systems is the same as that of the mature porin. Transfer in vitro of mitochondrial porin from the cytosolic fraction into the outer membrane of mitochondria could be demonstrated. Before membrane insertion, mitochondrial porin is highly sensitive to added proteinase; afterwards it is strongly protected. Binding of the precursor form to mitochondria occurs at 4°C and appears to precede insertion into the membrane. Unlike transfer of many precursor proteins into or across the inner mitochondrial membrane, assembly of the porin is not dependent on an electrical potential across the inner membrane
Phenotypic spectrum in osteogenesis imperfecta due to mutations in TMEM38B: unravelling a complex cellular defect.
Context: Recessive mutations in TMEM38B cause type XIV osteogenesis imperfecta (OI) by dysregulating intracellular calcium flux. Objectives: Clinical and bone material phenotype description and osteoblast differentiation studies. Design and Setting: Natural history study in paediatric research centres. Patients: Eight patients with type XIV OI. Main Outcome Measures: Clinical examinations included: bone mineral density, radiographs, echocardiography and muscle biopsy. Bone biopsy samples (n=3) were analysed using histomorphometry, quantitative backscattered electron microscopy and Raman microspectroscopy. Cellular differentiation studies were performed on proband and control osteoblasts and normal murine osteoclasts. Results: The clinical phenotype of type XIV OI ranges from asymptomatic to severe. Previously unreported features include vertebral fractures, periosteal cloaking, coxa vara and extraskeletal features (muscular hypotonia, cardiac abnormalities). Proband L1-L4 bone density Z-score was reduced (median -3.3 [range -4.77 to +0.1; n=7]), and increased by +1.7 (1.17 to 3.0; n=3) following bisphosphonate therapy. TMEM38B mutant bone has reduced trabecular bone volume, osteoblast and particularly osteoclast numbers, with >80% reduction in bone resorption. Bone matrix mineralization is normal and nanoporosity low. We demonstrate a complex osteoblast differentiation defect with decreased expression of early markers and increased late and mineralization-related markers. Predominance of TRIC-B over TRIC-A expression in murine osteoclasts supports an intrinsic osteoclast defect underlying low bone turnover. Conclusions: OI type XIV has a bone histology, matrix mineralization and osteoblast differentiation pattern that is distinct from OI with collagen defects. Probands are responsive to bisphosphonates and some show muscular and cardiovascular features possibly related to intracellular calcium flux abnormalities
ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries
This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors
Delphi consensus on reporting standards in clinical studies for endovascular treatment of acute iliofemoral venous thrombosis and chronic iliofemoral venous obstruction
Acute iliofemoral deep vein thrombosis and chronic iliofemoral venous obstruction cause substantial patient harm and are increasingly managed with endovascular venous interventions, including percutaneous mechanical thrombectomy and stent placement. However, studies of these treatment elements have not been designed and reported with sufficient rigor to support confident conclusions about their clinical utility. In this project, the Trustworthy consensus-based statement approach was utilized to develop, via a structured process, consensus-based statements to guide future investigators of venous interventions. Thirty statements were drafted to encompass major topics relevant to venous study description and design, safety outcome assessment, efficacy outcome assessment, and topics specific to evaluating percutaneous venous thrombectomy and stent placement. Using modified Delphi techniques for consensus achievement, a panel of physician experts in vascular disease voted on the statements and succeeded in reaching the predefined threshold of \u3e80% consensus (agreement or strong agreement) on all 30 statements. It is hoped that the guidance from these statements will improve standardization, objectivity, and patient-centered relevance in the reporting of clinical outcomes of endovascular interventions for acute iliofemoral deep venous thrombosis and chronic iliofemoral venous obstruction in clinical studies and thereby enhance venous patient care
3D osteocyte lacunar morphometry of human bone biopsies with high resolution microCT : from monoclonal gammopathy to newly diagnosed multiple myeloma
Osteocytes are bone-embedded cells connected via canaliculi and they regulate the bone resorption/formation balance. Osteocyte function is altered in skeletal disorders including cancer. Multiple myeloma (MM) is a hematological malignancy, whereby plasma cells disrupt the bone homeostasis and induce excessive resorption of the mineralized extracellular matrix (ECM), as evidenced by clinical computed tomography (CT). However, morphometric analyses of the mineralized ECM and bone microporosity are not yet performed in patients with MM, nor in the precursor conditions of monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM). Here, we characterize changes in 3D osteocyte lacunar morphology in bone biopsy samples obtained from patients with MGUS, SMM and newly diagnosed MM, using high resolution microCT. In the small lacunae 20-900 um3 range, we found a trend for lower lacunar density and increasing 50% cutoff of the lacunar volume cumulative distribution for diseased samples. In the larger lacunae 900-3000 um3 range, we found significantly higher lacunar density and microporosity in the MM group compared to the MGUS/SMM group. Regarding the shape distribution, the MGUS/SMM group showed a trend for flatter, more elongated and anisotropic osteocyte lacunae compared to the control group, though the differences were not statistically significant. Altogether, our findings suggest that osteocytes in human MM bone disease undergo changes in their lacunae morphology, which could be an indicator for impaired bone quality. Future studies are needed to show whether these are consistent within comparable anatomical sites and could serve as a diagnostic or prognostic marker
Quantitative backscattered electron imaging of bone using a thermionic or a field emission electron source
Quantitative backscattered electron imaging is an established method to map mineral content distributions in bone and to determine the bone mineralization density distribution (BMDD). The method we applied was initially validated for a scanning electron microscope (SEM) equipped with a tungsten hairpin cathode (thermionic electron emission) under strongly defined settings of SEM parameters. For several reasons, it would be interesting to migrate the technique to a SEM with a field emission electron source (FE-SEM), which, however, would require to work with different SEM parameter settings as have been validated for DSM 962. The FE-SEM has a much better spatial resolution based on an electron source size in the order of several 100 nanometers, corresponding to an about 105 to 106 times smaller source area compared to thermionic sources. In the present work, we compare BMDD between these two types of instruments in order to further validate the methodology. We show that a transition to higher pixel resolution (1.76, 0.88, and 0.57 μm) results in shifts of the BMDD peak and BMDD width to higher values. Further the inter-device reproducibility of the mean calcium content shows a difference of up to 1 wt% Ca, while the technical variance of each device can be reduced to ±0.17 wt% Ca. Bearing in mind that shifts in calcium levels due to diseases, e.g., high turnover osteoporosis, are often in the range of 1 wt% Ca, both the bone samples of the patients as well as the control samples have to be measured on the same SEM device. Therefore, we also constructed new reference BMDD curves for adults to be used for FE-SEM data comparison
- …
