13,428 research outputs found

    Scaling laws for the photo-ionisation cross section of two-electron atoms

    Get PDF
    The cross sections for single-electron photo-ionisation in two-electron atoms show fluctuations which decrease in amplitude when approaching the double-ionisation threshold. Based on semiclassical closed orbit theory, we show that the algebraic decay of the fluctuations can be characterised in terms of a threshold law σEμ\sigma \propto |E|^{\mu} as E0E \to 0_- with exponent μ\mu obtained as a combination of stability exponents of the triple-collision singularity. It differs from Wannier's exponent dominating double ionisation processes. The details of the fluctuations are linked to a set of infinitely unstable classical orbits starting and ending in the non-regularisable triple collision. The findings are compared with quantum calculations for a model system, namely collinear helium.Comment: 4 pages, 1 figur

    Irreversible Deposition of Line Segment Mixtures on a Square Lattice: Monte Carlo Study

    Full text link
    We have studied kinetics of random sequential adsorption of mixtures on a square lattice using Monte Carlo method. Mixtures of linear short segments and long segments were deposited with the probability pp and 1p1-p, respectively. For fixed lengths of each segment in the mixture, the jamming limits decrease when pp increases. The jamming limits of mixtures always are greater than those of the pure short- or long-segment deposition. For fixed pp and fixed length of the short segments, the jamming limits have a maximum when the length of the long segment increases. We conjectured a kinetic equation for the jamming coverage based on the data fitting.Comment: 7 pages, latex, 5 postscript figure

    Effects of pressure on the ferromagnetic state of the CDW compound SmNiC2

    Full text link
    We report the pressure response of charge-density-wave (CDW) and ferromagnetic (FM) phases of the rare-earth intermetallic SmNiC2 up to 5.5 GPa. The CDW transition temperature (T_{CDW}), which is reflected as a sharp inflection in the electrical resistivity, is almost independent of pressure up to 2.18 GPa but is strongly enhanced at higher pressures, increasing from 155.7 K at 2.2 GPa to 279.3 K at 5.5 GPa. Commensurate with the sharp increase in T_{CDW}, the first-order FM phase transition, which decreases with applied pressure, bifurcates into the upper (T_{M1}) and lower (T_c) phase transitions and the lower transition changes its nature to second order above 2.18 GPa. Enhancement both in the residual resistivity and the Fermi-liquid T^2 coefficient A near 3.8 GPa suggests abundant magnetic quantum fluctuations that arise from the possible presence of a FM quantum critical point.Comment: 5 pages, 5 figure

    Millisecond accuracy video display using OpenGL under Linux

    Get PDF
    To measure people’s reaction times to the nearest millisecond, it is necessary to know exactly when a stimulus is displayed. This article describes how to display stimuli with millisecond accuracy on a normal CRT monitor, using a PC running Linux. A simple C program is presented to illustrate how this may be done within X Windows using the OpenGL rendering system. A test of this system is reported that demonstrates that stimuli may be consistently displayed with millisecond accuracy. An algorithm is presented that allows the exact time of stimulus presentation to be deduced, even if there are relatively large errors in measuring the display time

    Condensation and Clustering in the Driven Pair Exclusion Process

    Full text link
    We investigate particle condensation in a driven pair exclusion process on one- and two- dimensional lattices under the periodic boundary condition. The model describes a biased hopping of particles subject to a pair exclusion constraint that each particle cannot stay at a same site with its pre-assigned partner. The pair exclusion causes a mesoscopic condensation characterized by the scaling of the condensate size mconNβm_{\rm con}\sim N^\beta and the number of condensates NconNαN_{\rm con}\sim N^\alpha with the total number of sites NN. Those condensates are distributed randomly without hopping bias. We find that the hopping bias generates a spatial correlation among condensates so that a cluster of condensates appears. Especially, the cluster has an anisotropic shape in the two-dimensional system. The mesoscopic condensation and the clustering are studied by means of numerical simulations.Comment: 4 pages, 5 figure

    Detectability of dissipative motion in quantum vacuum via superradiance

    Get PDF
    We propose an experiment for generating and detecting vacuum-induced dissipative motion. A high frequency mechanical resonator driven in resonance is expected to dissipate energy in quantum vacuum via photon emission. The photons are stored in a high quality electromagnetic cavity and detected through their interaction with ultracold alkali-metal atoms prepared in an inverted population of hyperfine states. Superradiant amplification of the generated photons results in a detectable radio-frequency signal temporally distinguishable from the expected background.Comment: 4 pages, 2 figure
    corecore