123,293 research outputs found

    Recruitment Market Trend Analysis with Sequential Latent Variable Models

    Full text link
    Recruitment market analysis provides valuable understanding of industry-specific economic growth and plays an important role for both employers and job seekers. With the rapid development of online recruitment services, massive recruitment data have been accumulated and enable a new paradigm for recruitment market analysis. However, traditional methods for recruitment market analysis largely rely on the knowledge of domain experts and classic statistical models, which are usually too general to model large-scale dynamic recruitment data, and have difficulties to capture the fine-grained market trends. To this end, in this paper, we propose a new research paradigm for recruitment market analysis by leveraging unsupervised learning techniques for automatically discovering recruitment market trends based on large-scale recruitment data. Specifically, we develop a novel sequential latent variable model, named MTLVM, which is designed for capturing the sequential dependencies of corporate recruitment states and is able to automatically learn the latent recruitment topics within a Bayesian generative framework. In particular, to capture the variability of recruitment topics over time, we design hierarchical dirichlet processes for MTLVM. These processes allow to dynamically generate the evolving recruitment topics. Finally, we implement a prototype system to empirically evaluate our approach based on real-world recruitment data in China. Indeed, by visualizing the results from MTLVM, we can successfully reveal many interesting findings, such as the popularity of LBS related jobs reached the peak in the 2nd half of 2014, and decreased in 2015.Comment: 11 pages, 30 figure, SIGKDD 201

    Distance-two labelings of digraphs

    Full text link
    For positive integers jkj\ge k, an L(j,k)L(j,k)-labeling of a digraph DD is a function ff from V(D)V(D) into the set of nonnegative integers such that f(x)f(y)j|f(x)-f(y)|\ge j if xx is adjacent to yy in DD and f(x)f(y)k|f(x)-f(y)|\ge k if xx is of distant two to yy in DD. Elements of the image of ff are called labels. The L(j,k)L(j,k)-labeling problem is to determine the λj,k\vec{\lambda}_{j,k}-number λj,k(D)\vec{\lambda}_{j,k}(D) of a digraph DD, which is the minimum of the maximum label used in an L(j,k)L(j,k)-labeling of DD. This paper studies λj,k\vec{\lambda}_{j,k}- numbers of digraphs. In particular, we determine λj,k\vec{\lambda}_{j,k}- numbers of digraphs whose longest dipath is of length at most 2, and λj,k\vec{\lambda}_{j,k}-numbers of ditrees having dipaths of length 4. We also give bounds for λj,k\vec{\lambda}_{j,k}-numbers of bipartite digraphs whose longest dipath is of length 3. Finally, we present a linear-time algorithm for determining λj,1\vec{\lambda}_{j,1}-numbers of ditrees whose longest dipath is of length 3.Comment: 12 pages; presented in SIAM Coference on Discrete Mathematics, June 13-16, 2004, Loews Vanderbilt Plaza Hotel, Nashville, TN, US

    OPERA superluminal neutrinos and Kinematics in Finsler spacetime

    Full text link
    The OPERA collaboration recently reported that muon neutrinos could be superluminal. More recently, Cohen and Glashow pointed that such superluminal neutrinos would be suppressed since they lose their energies rapidly via bremsstrahlung. In this Letter, we propose that Finslerian nature of spacetime could account for the superluminal phenomena of particles. The Finsler spacetime permits the existence of superluminal behavior of particles while the casuality still holds. A new dispersion relation is obtained in a class of Finsler spacetime. It is shown that the superluminal speed is linearly dependent on the energy per unit mass of the particle. We find that such a superluminal speed formula is consistent with data of OPERA, MINOS and Fermilab-1979 neutrino experiments as well as observations on neutrinos from SN1987a.Comment: 10 pages, 2 figures. Viewpoints of Finslerian special relativity on OPERA superluminal neutrino

    Intensity dependences of the nonlinear optical excitation of plasmons in graphene

    Get PDF
    Recently, we demonstrated an all-optical coupling scheme for plasmons, which takes advantage of the intrinsic nonlinear optical response of graphene. Frequency mixing using free-space, visible light pulses generates surface plasmons in a planar graphene sample, where the phase matching condition can define both the wavevector and energy of surface waves and intraband transitions. Here, we also show that the plasmon generation process is strongly intensity-dependent, with resonance features washed out for absorbed pulse fluences greater than 0.1 J m−2. This implies a subtle interplay between the nonlinear generation process and sample heating. We discuss these effects in terms of a non-equilibrium charge distribution using a two-temperature model.Peer ReviewedPostprint (author's final draft

    Coherent spin mixing dynamics in a spin-1 atomic condensate

    Full text link
    We study the coherent off-equilibrium spin mixing inside an atomic condensate. Using mean field theory and adopting the single spatial mode approximation (SMA), the condensate spin dynamics is found to be well described by that of a nonrigid pendulum, and displays a variety of periodic oscillations in an external magnetic field. Our results illuminate several recent experimental observations and provide critical insights into the observation of coherent interaction-driven oscillations in a spin-1 condensate.Comment: 6 pages, 5 eps figures, update the discussion of the experimental result

    The Neutron Electric Dipole Moment and CP-violating Couplings in the Supersymmetric Standard Model without R-parity

    Full text link
    We analyze the neutron electric dipole moment (EDM) in the Minimal Supersymmetric Model with explicit R-parity violating terms. The leading contribution to the EDM occurs at the 2-loop level and is dominated by the chromoelectric dipole moments of quarks, assuming there is no tree-level mixings between sleptons and Higgs bosons or between leptons and gauginos. Based on the experimental constraint on the neutron EDM, we set limits on the imaginary parts of complex couplings λijk{\lambda'}_{ijk} and λijk{\lambda}_{ijk} due to the virtual b-loop or tau-loop.Comment: final manuscript to appear in Phys. Rev. D, 15 pages, latex, 4 figures include
    corecore