59,809 research outputs found

    A super-ductile alloy for the die-casting of aluminium automotive body structural components

    Get PDF
    Super-ductile die-cast aluminium alloys are critical to future light-weighting of automotive body structures. This paper introduces a die-cast aluminium alloy that can satisfy the requirements of these applications. After a review of currently available alloys, the requirement of a die-cast aluminium alloy for automotive body structural parts is proposed and an Al-Mg-Si system is suggested. The effect of the alloying elements, in the composition, has been investigated on the microstructure and mechanical properties, in particular the yield strength, the ultimate tensile strength and elongation. © (2014) Trans Tech Publications, Switzerland.The EPSRC and JLR U

    Spectrum scanning and reserve channel methods for link maintenance in cognitive radio systems

    Get PDF

    Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright @ 2012 Elsevier B.V.This article has been made available through the Brunel Open Access Publishing Fund.Al–Mg–Si based alloys can provide super ductility to satisfy the demands of thin wall castings in the application of automotive structure. In this work, the effect of iron on the microstructure and mechanical properties of the Al–Mg–Si diecast alloys with different Mn concentrations is investigated. The CALPHAD (acronym of Calculation of Phase Diagrams) modelling with the thermodynamic properties of the multi-component Al–Mg–Si–Mn–Fe and Al–Mg–Si–Fe systems is carried out to understand the role of alloying on the formation of different primary Fe-rich intermetallic compounds. The results showed that the Fe-rich intermetallic phases precipitate in two solidification stages in the high pressure die casting process: one is in the shot sleeve and the other is in the die cavity, resulting in the different morphologies and sizes. In the Al–Mg–Si–Mn alloys, the Fe-rich intermetallic phase formed in the shot sleeve exhibited coarse compact morphology and those formed in the die cavity were fine compact particles. Although with different morphologies, the compact intermetallics were identified as the same α-AlFeMnSi phase with typical composition of Al24(Fe,Mn)6Si2. With increased Fe content, β-AlFe was found in the microstructure with a long needle-shaped morphology, which was identified as Al13(Fe,Mn)4Si0.25. In the Al–Mg–Si alloy, the identified Fe-rich intermetallics included the compact α-AlFeSi phase with typical composition of Al8Fe2Si and the needle-shaped β-AlFe phase with typical composition of Al13Fe4. Generally, the existence of iron in the alloy slightly increases the yield strength, but significantly reduces the elongation. The ultimate tensile strength maintains at similar levels when Fe contents is less than 0.5 wt%, but decreases significantly with the further increased Fe concentration in the alloys. CALPHAD modelling shows that the addition of Mn enlarges the Fe tolerance for the formation of α-AlFeMnSi intermetallics and suppresses the formation of β-AlFe phase in the Al–Mg–Si alloys, and thus improves their mechanical properties.EPSRC and JL

    Information of Structures in Galaxy Distribution

    Full text link
    We introduce an information-theoretic measure, the Renyi information, to describe the galaxy distribution in space. We discuss properties of the information measure, and demonstrate its relationship with the probability distribution function and multifractal descriptions. Using the First Look Survey galaxy samples observed by the Infrared Array Camera onboard Spitzer Space Telescope, we present measurements of the Renyi information, as well as the counts-in-cells distribution and multifractal properties of galaxies in mid-infrared wavelengths. Guided by multiplicative cascade simulation based on a binomial model, we verify our measurements, and discuss the spatial selection effects on measuring information of the spatial structures. We derive structure scan functions at scales where selection effects are small for the Spitzer samples. We discuss the results, and the potential of applying the Renyi information to measuring other spatial structures.Comment: 25 pages, 8 figures, submitted to ApJ; To appear in The Astrophysical Journal 2006, 644, 678 (June 20th

    Ultrasonic metal sheet thickness measurement without prior wave speed calibration

    Get PDF
    Conventional ultrasonic mensuration of sample thickness from one side only requires the bulk wave reverberation time and a calibration speed. This speed changes with temperature, stress, and microstructure, limiting thickness measurement accuracy. Often, only one side of a sample is accessible, making in situ calibration impossible. Non-contact ultrasound can generate multiple shear horizontal guided wave modes on one side of a metal plate. Measuring propagation times of each mode at different transducer separations, allows sheet thickness to be calculated to better than 1% accuracy for sheets of at least 1.5 mm thickness, without any calibration

    Noncooperative equilibrium solutions for spectrum access in distributed cognitive radio networks

    Get PDF

    Evaluation of a Phosphate Management Protocol to Achieve Optimum Serum Phosphate Levels in Hemodialysis Patients

    Get PDF
    Original article can be found at: http://www.sciencedirect.com/science/journal/10512276 Copyright National Kidney Foundation, Inc. DOI: 10.1053/j.jrn.2008.05.003To evaluate the effectiveness of a protocol designed to optimize serum phosphate levels in patients undergoing regular hemodialysis (HD).Peer reviewe

    Concentrations and snow-atmosphere fluxes of reactive nitrogen at Summit, Greenland

    Get PDF
    Concentrations and fluxes of NOy (total reactive nitrogen), ozone concentrations and fluxes of sensible heat, water vapor, and momentum were measured from May 1 to July 20, 1995 at Summit, Greenland. Median NOy concentrations declined from 947 ppt in May to 444 ppt by July. NOy fluxes were observed into and out of the snow, but the magnitudes were usually below 1 μmol m−2 h−1 because of the low HNO3 concentration and weak turbulence over the snow surface. Some of the highest observed fluxes may be due to temporary storage by equilibrium sorption of peroxyacetylnitrate (PAN) or other organic nitrogen species on ice surfaces in the upper snowpack. Sublimation of snow at the surface or during blowing snow events is associated with efflux of NOy from the snowpack. Because the NOy fluxes during summer at Summit are bidirectional and small in magnitude, the net result of turbulent NOyexchange is insignificant compared to the 2 μmol m−2 d−1 mean input from fresh snow during the summer months. If the arctic NOy reservoir is predominantly PAN (or compounds with similar properties), thermal dissociation of this NOy is sufficient to support the observed flux of nitrate in fresh snow. Very low HNO3 concentrations in the surface layer (1% of total NOy) reflect the poor ventilation of the surface layer over the snowpack combined with the relatively rapid uptake of HNO3 by fog, falling snow, and direct deposition to the snowpack
    corecore