2,184 research outputs found

    Impact of Pay for Performance on Prescribing of Long-Acting Reversible Contraception in Primary Care: An Interrupted Time Series Study

    Get PDF
    BACKGROUND: The aim of this study was to evaluate the impact of Quality and Outcomes Framework (QOF), a major pay-for-performance programme in the United Kingdom, on prescribing of long-acting reversible contraceptives (LARC) in primary care. METHODS: Negative binomial interrupted time series analysis using practice level prescribing data from April 2007 to March 2012. The main outcome measure was the prescribing rate of long-acting reversible contraceptives (LARC), including hormonal and non hormonal intrauterine devices and systems (IUDs and IUSs), injectable contraceptives and hormonal implants. RESULTS: Prescribing rates of Long-Acting Reversible Contraception (LARC) were stable before the introduction of contraceptive targets to the QOF and increased afterwards by 4% annually (rate ratios  = 1.04, 95% CI = 1.03, 1.06). The increase in LARC prescribing was mainly driven by increases in injectables (increased by 6% annually), which was the most commonly prescribed LARC method. Of other types of LARC, the QOF indicator was associated with a step increase of 20% in implant prescribing (RR =  1.20, 95% CI =  1.09, 1.32). This change is equivalent to an additional 110 thousand women being prescribed with LARC had QOF points not been introduced. CONCLUSIONS: Pay for performance incentives for contraceptive counselling in primary care with women seeking contraceptive advice has increased uptake of LARC methods

    Dependence of Maximum Trappable Field on Superconducting Nb3Sn Cylinder Wall Thickness

    Full text link
    Uniform dipole magnetic fields from 1.9 to 22.4 kOe were permanently trapped, with high fidelity to the original field, transversely to the axes of hollow Nb3Sn superconducting cylinders. These cylinders were constructed by helically wrapping multiple layers of superconducting ribbon around a mandrel. This is the highest field yet trapped, the first time trapping has been reported in such helically wound taped cylinders, and the first time the maximum trappable field has been experimentally determined as a function of cylinder wall thickness.Comment: 8 pages, 4 figures, 1 table. PACS numbers: 74.60.Ge, 74.70.Ps, 41.10.Fs, 85.25.+

    Global gravitational instability of FLRW backgrounds - interpreting the dark sectors

    Get PDF
    The standard model of cosmology is based on homogeneous-isotropic solutions of Einstein's equations. These solutions are known to be gravitationally unstable to local inhomogeneous perturbations, commonly described as evolving on a background given by the same solutions. In this picture, the FLRW backgrounds are taken to describe the average over inhomogeneous perturbations for all times. We study in the present article the (in)stability of FLRW dust backgrounds within a class of averaged inhomogeneous cosmologies. We examine the phase portraits of the latter, discuss their fixed points and orbital structure and provide detailed illustrations. We show that FLRW cosmologies are unstable in some relevant cases: averaged models are driven away from them through structure formation and accelerated expansion. We find support for the proposal that the dark components of the FLRW framework may be associated to these instability sectors. Our conclusion is that FLRW cosmologies have to be considered critically as for their role to serve as reliable models for the physical background.Comment: 15 pages, 13 figures, 1 table. Matches published version in CQ

    Ergodicity criteria for non-expanding transformations of 2-adic spheres

    Full text link
    In the paper, we obtain necessary and sufficient conditions for ergodicity (with respect to the normalized Haar measure) of discrete dynamical systems on 2-adic spheres S2r(a)\mathbf S_{2^{-r}}(a) of radius 2r2^{-r}, r1r\ge 1, centered at some point aa from the ultrametric space of 2-adic integers Z2\mathbb Z_2. The map f ⁣:Z2Z2f\colon\mathbb Z_2\to\mathbb Z_2 is assumed to be non-expanding and measure-preserving; that is, ff satisfies a Lipschitz condition with a constant 1 with respect to the 2-adic metric, and ff preserves a natural probability measure on Z2\mathbb Z_2, the Haar measure μ2\mu_2 on Z2\mathbb Z_2 which is normalized so that μ2(Z2)=1\mu_2(\mathbb Z_2)=1

    Surface critical behavior of bcc binary alloys

    Full text link
    The surface critical behavior of bcc binary alloys undergoing a continuous B2-A2 order-disorder transition is investigated in the mean-field (MF) approximation. Our main aim is to provide clear evidence for the fact that surfaces which break the two-sublattice symmetry generically display the critical behavior of the NORMAL transition, whereas symmetry-preserving surfaces exhibit ORDINARY surface critical behavior. To this end we analyze the lattice MF equations for both types of surfaces in terms of nonlinear symplectic maps and derive a Ginzburg-Landau model for the symmetry-breaking (100) surface. The crucial feature of the continuum model is the emergence of an EFFECTIVE ORDERING (``staggered'') SURFACE FIELD, which depends on temperature and the other lattice model parameters, and which explains the appearance of NORMAL critical behavior for symmetry-breaking surfaces.Comment: 16 pages, REVTeX 3.0, 13 EPSF figures, submitted to Phys. Rev.

    Evolution of the Bianchi I, the Bianchi III and the Kantowski-Sachs Universe: Isotropization and Inflation

    Get PDF
    We study the Einstein-Klein-Gordon equations for a convex positive potential in a Bianchi I, a Bianchi III and a Kantowski-Sachs universe. After analysing the inherent properties of the system of differential equations, the study of the asymptotic behaviors of the solutions and their stability is done for an exponential potential. The results are compared with those of Burd and Barrow. In contrast with their results, we show that for the BI case isotropy can be reached without inflation and we find new critical points which lead to new exact solutions. On the other hand we recover the result of Burd and Barrow that if inflation occurs then isotropy is always reached. The numerical integration is also done and all the asymptotical behaviors are confirmed.Comment: 22 pages, 12 figures, Self-consistent Latex2e File. To be published in Phys. Rev.

    A Study Of A New Class Of Discrete Nonlinear Schroedinger Equations

    Full text link
    A new class of 1D discrete nonlinear Schro¨{\ddot{\rm{o}}}dinger Hamiltonians with tunable nonlinerities is introduced, which includes the integrable Ablowitz-Ladik system as a limit. A new subset of equations, which are derived from these Hamiltonians using a generalized definition of Poisson brackets, and collectively refered to as the N-AL equation, is studied. The symmetry properties of the equation are discussed. These equations are shown to possess propagating localized solutions, having the continuous translational symmetry of the one-soliton solution of the Ablowitz-Ladik nonlinear Schro¨{\ddot{\rm{o}}}dinger equation. The N-AL systems are shown to be suitable to study the combined effect of the dynamical imbalance of nonlinearity and dispersion and the Peierls-Nabarro potential, arising from the lattice discreteness, on the propagating solitary wave like profiles. A perturbative analysis shows that the N-AL systems can have discrete breather solutions, due to the presence of saddle center bifurcations in phase portraits. The unstaggered localized states are shown to have positive effective mass. On the other hand, large width but small amplitude staggered localized states have negative effective mass. The collison dynamics of two colliding solitary wave profiles are studied numerically. Notwithstanding colliding solitary wave profiles are seen to exhibit nontrivial nonsolitonic interactions, certain universal features are observed in the collison dynamics. Future scopes of this work and possible applications of the N-AL systems are discussed.Comment: 17 pages, 15 figures, revtex4, xmgr, gn

    Two Bessel Bridges Conditioned Never to Collide, Double Dirichlet Series, and Jacobi Theta Function

    Full text link
    It is known that the moments of the maximum value of a one-dimensional conditional Brownian motion, the three-dimensional Bessel bridge with duration 1 started from the origin, are expressed using the Riemann zeta function. We consider a system of two Bessel bridges, in which noncolliding condition is imposed. We show that the moments of the maximum value is then expressed using the double Dirichlet series, or using the integrals of products of the Jacobi theta functions and its derivatives. Since the present system will be provided as a diffusion scaling limit of a version of vicious walker model, the ensemble of 2-watermelons with a wall, the dominant terms in long-time asymptotics of moments of height of 2-watermelons are completely determined. For the height of 2-watermelons with a wall, the average value was recently studied by Fulmek by a method of enumerative combinatorics.Comment: v2: LaTeX, 19 pages, 2 figures, minor corrections made for publication in J. Stat. Phy
    corecore