8,283 research outputs found

    Ku & C Band solid state switch matrix for satellite payloads using LTCC multilayer substrate

    Get PDF
    This paper describes the design and development of Ku and C band solid state switch matrix for multimedia satellite payloads. The design, through the use of advanced packaging techniques, allows significant savings on mass and volume with respect to traditional electromechanical switches while guaranteeing a comparable reliability

    Vestibulo-Ocular Reflex Modification after Virtual Environment Exposure

    Get PDF
    Immersion in an illusory world is possible by means of virtual reality (VR), where environmental perception is modi bff c1c ed by artificial sensorial stimulation. The application of VR for the assessment and rehabilitation of pathologies affecting the vestibular system, in terms of both diagnosis and care, could represent an interesting new line of research. Our perception of reality is in fact based on static and dynamic spatial information perceived by our senses. During head movements in a virtual environment the images on the display and the labyrinthine information relative to the head angular accelerations differ and therefore a visuo-vestibular conflict is present. It is known that mismatches between visual and labyrinthine information may modify the vestibulo-oculomotor reflex (VOR) gain. We studied the post-immersion modifications in 20 healthy subjects (mean age 25 years) exposed to a virtual environment for 20 min by wearing a head-mounted display. VOR gain and phase were measured by means of harmonic sinusoidal stimulation in the dark before, at the end of and 30 min after VR exposure. A VOR gain reduction was observed in all subjects at the end of VR exposure which disappeared after 30 min. Our data show that exposure to a virtual environment can induce a temporary modi bff c1c cation of the VOR gain. This bff c1c nding can be employed to enable an artificial, instrumental modification of the VOR gain and therefore opens up new perspectives in the assessment and rehabilitation of vestibular diseases

    Investigating feedforward neural regulation of circulation from analysis of spontaneous arterial pressure and heart rate fluctuations in conscious rats.

    Get PDF
    Investigating feedforward neural regulation of circulation from analysis of spontaneous arterial pressure and heart rate fluctuations in conscious rats. Am J Physiol Heart Circ Physiol 296: H202–H210, 2009. First published November 14, 2008; doi:10.1152/ajpheart.00358.2008.—It has been suggested in anesthetized animals that the occurrence of sequences of consecutive beats characterized by systolic arterial pressure (SAP) and RR or pulse interval (PI) changing in the opposite direction (SAP /RR and SAP /RR , nonbaroreflex sequences) might represent the expression of neural cardiovascular regulatory mechanisms operating with feedforward characteristics. The aim of the present study was to study nonbaroreflex sequences in a more physiological experimental model, i.e., in conscious freely moving rats. We studied conscious rats before and after 1) complete autonomic blockade (n 12), 2) sympathetic blockade (n 10), 3) (n 7)- and (n 8)-adrenergic blockade, and 4) parasympathetic blockade (n 10). Nonbaroreflex sequences were defined as three or more beats in which SAP and PI of the following beat changed in the opposite direction. Complete autonomic blockade reduced the number of nonbaroreflex sequences (95.6 9.0 vs. 45.2 4.1, P 0.001), as did sympathetic blockade (80.9 12.6 vs. 30.9 6.1, P 0.001). The selective -receptor blockade did not induce significant changes (80.9 12.5 in baseline vs. 79.0 14.7 after prazosin), whereas -receptor blockade significantly reduced nonbaroreflex sequence occurrence (80.9 12.5 in baseline vs. 48.9 15.3 after propranolol). Parasympathetic blockade produced a significant increase of nonbaroreflex sequences (95.1 6.9 vs. 136.0 12.4, P 0.01). These results demonstrate the physiological role of the nonbaroreflex sequences as an expression of a feedforward type of short-term cardiovascular regulation able to interact dynamically with the feedback mechanisms of baroreflex origin in the neural control of the sinus node

    Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning

    Get PDF
    A novel (scalable) electrospinning process was developed to fabricate bio-inspired multiscale three-dimensional scaffolds endowed with a controlled multimodal distribution of fiber diameters and geared towards soft tissue engineering. The resulting materials finely mingle nano- and microscale fibers together, rather than simply juxtaposing them, as is commonly found in the literature. A detailed proof of concept study was conducted on a simpler bimodal poly(ε-caprolactone) (PCL) scaffold with modes of fiber distribution at 600 nm and 3.3 μm. Three conventional unimodal scaffolds with mean diameters of 300 nm and 2.6 and 5.2 μm, respectively, were used as controls to evaluate the new materials. Characterization of the microstructure (i.e. porosity, fiber distribution and pore structure) and mechanical properties (i.e. stiffness, strength and failure mode) indicated that the multimodal scaffold had superior mechanical properties (Young's modulus ∼40 MPa and strength ∼1 MPa) in comparison with the controls, despite the large porosity (∼90% on average). A biological assessment was conducted with bone marrow stromal cell type (mesenchymal stem cells, mTERT-MSCs). While the new material compared favorably with the controls with respect to cell viability (on the outer surface), it outperformed them in terms of cell colonization within the scaffold. The latter result, which could neither be practically achieved in the controls nor expected based on current models of pore size distribution, demonstrated the greater openness of the pore structure of the bimodal material, which remarkably did not come at the expense of its mechanical properties. Furthermore, nanofibers were seen to form a nanoweb bridging across neighboring microfibers, which boosted cell motility and survival. Lastly, standard adipogenic and osteogenic differentiation tests served to demonstrate that the new scaffold did not hinder the multilineage potential of stem cells. © 2009 Acta Materialia Inc

    Radioisotopic purity and imaging properties of cyclotron-produced 99mTc using direct 100Mo(p,2n) reaction

    Get PDF
    Evaluation of the radioisotopic purity of technetium-99m (99mTc) produced in GBq amounts by proton bombardment of enriched molibdenum-100 (100Mo) metallic targets at low proton energies (i.e. within 15\u201320 MeV) is conducted. This energy range was chosen since it is easily achievable by many conventional medical cyclotrons already available in the nuclear medicine departments of hospitals. The main motivation for such a study is in the framework of the research activities at the international level that have been conducted over the last few years to develop alternative production routes for the most widespread radioisotope used in medical imaging. The analysis of technetium isotopes and isomeric states (9xTc) present in the pertechnetate saline Na99mTcO4 solutions, obtained after the extraction/purification procedure, reveals radionuclidic purity levels basically in compliance with the limits recently issued by European Pharmacopoeia 9.3 (2018 Sodium pertechnetate (99mTc) injection 4801\u20133). Moreover, the impact of 9xTc contaminant nuclides on the final image quality is thoroughly evaluated, analyzing the emitted high-energy gamma rays and their influence on the image quality. The spatial resolution of images from cyclotron-produced 99mTc acquired with a mini-gamma camera was determined and compared with that obtained using technetium-99m solutions eluted from standard 99Mo/99mTc generators. The effect of the increased image background contribution due to Compton-scattered higher-energy gamma rays (E \u3b3 \u2009\u2009>\u2009\u2009200\u2009keV), which could cause image-contrast deterioration, was also studied. It is concluded that, due to the high radionuclidic purity of cyclotron-produced 99mTc using 100Mo(p,2n)99mTc reaction at a proton beam energy in the range 15.7\u201319.4 MeV, the resulting image properties are well comparable with those from the generator-eluted 99mTc

    Te covered Si(001): a variable surface reconstruction

    Get PDF
    At a given temperature, clean and adatom covered silicon surfaces usually exhibit well-defined reconstruction patterns. Our finite temperature ab-initio molecular dynamics calculations show that the tellurium covered Si(001) surface is an exception. Soft longitudinal modes of surface phonons due to the strongly anharmonic potential of the bridged tellurium atoms prevent the reconstruction structure from attaining any permanent, two dimensional periodic geometry. This explains why experiments attempting to find a definite model for the reconstruction have reached conflicting conclusions.Comment: 4 pages, 3 gif figure

    Human cardiac progenitor cell grafts as unrestricted source of supernumerary cardiac cells in healthy murine hearts

    Get PDF
    Human heart harbors a population of resident progenitor cells that can be isolated by stem cell antigen-1 antibody and expanded in culture. These cells can differentiate into cardiomyocytes in vitro and contribute to cardiac regeneration in vivo. However, when directly injected as single cell suspension, less than 1%-5% survive and differentiate. Among the major causes of this failure are the distressing protocols used to culture in vitro and implant progenitor cells into damaged hearts. Human cardiac progenitors obtained from the auricles of patients were cultured as scaffoldless engineered tissues fabricated using temperature-responsive surfaces. In the engineered tissue, progenitor cells established proper three-dimensional intercellular relationships and were embedded in self-produced extracellular matrix preserving their phenotype and multipotency in the absence of significant apoptosis. After engineered tissues were leant on visceral pericardium, a number of cells migrated into the murine myocardium and in the vascular walls, where they integrated in the respective textures. The study demonstrates the suitability of such an approach to deliver stem cells to the myocardium. Interestingly, the successful delivery of cells in murine healthy hearts suggests that myocardium displays a continued cell cupidity that is strictly regulated by the limited release of progenitor cells by the adopted source. When an unregulated cell source is added to the system, cells are delivered to the myocardium. The exploitation of this novel concept may pave the way to the setup of new protocols in cardiac cell therapy. STEM CELLS 2011;29:2051-206
    corecore