337 research outputs found
Adaptive multibeam phased array design for a Spacelab experiment
The parametric tradeoff analyses and design for an Adaptive Multibeam Phased Array (AMPA) for a Spacelab experiment are described. This AMPA Experiment System was designed with particular emphasis to maximize channel capacity and minimize implementation and cost impacts for future austere maritime and aeronautical users, operating with a low gain hemispherical coverage antenna element, low effective radiated power, and low antenna gain-to-system noise temperature ratio
3D numerical modelling of a compensation grouting field trial in alluvial soils
The underground bypass of the new high-speed and high-capacity railway line in Florence (IT) involves the construction of about 7 km of twin tunnels beneath
the historic city centre. To minimise the impact of tunnelling works, mitigation measures using the compensation grouting technique were integrated into the design stage with the aim of limiting the induced settlements and the risk of damage to nearby structures. A field trial near the Campo di Marte railway station was carried out to assess the efficiency of the compensation measure and establish a successful grouting strategy. This paper presents a three-dimensional numerical model of the field trial, explicitly implementing both the grouted volumes and the injection sequence. The grouted area is represented by non-porous soil bulbs with enhanced stiffness properties and the expansion process is simulated through imposed volumetric strains. The injections from each valve of the
sleeved pipes (tubes-à-manchettes) are activated in a stepwise procedure, mirroring the injection sequence. The effectiveness of the proposed strategy is validated against recorded displacements in the field trial, demonstrating that the application of non-isotropic volumetric strains (i.e., vertical strains larger than horizontal ones) is able to accurately reproduce the observed heave
Class A predictions of damage level in an historical fortress induced by twin tunnelling
Tunnelling below historical city centres requires the accurate analysis of the impact of construction works on cultural heritage monuments, which need to be preserved from any possible damage. In this paper, the undercrossing of an historical masonry structure in the city of Florence (Italy), the Fortezza da Basso, by two tunnels of the new high-speed railway underground line is analysed. The interaction problem is studied by a 3D class-A finite element numerical model. Advanced constitutive laws are adopted to describe the key features of the mechanical behaviour of both soil layers and masonry structures. The results of the analyses show that the excavation process is likely to induce a negligible to slight damage in the historical fortress when a typical surface volume loss of 0.5% is considered in greenfield conditions
Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration
Pathological conditions affecting skeletal muscle function may lead to irreversible volumetric
muscle loss (VML). Therapeutic approaches involving acellular matrices represent an
emerging and promising strategy to promote regeneration of skeletal muscle following injury.
Here we investigated the ability of three different decellularised skeletal muscle scaffolds to
support muscle regeneration in a xenogeneic immune-competent model of VML, in which
the EDL muscle was surgically resected. All implanted acellular matrices, used to replace
the resected muscles, were able to generate functional artificial muscles by promoting host
myogenic cell migration and differentiation, as well as nervous fibres, vascular networks, and
satellite cell (SC) homing. However, acellular tissue mainly composed of extracellular matrix
(ECM) allowed better myofibre three-dimensional (3D) organization and the restoration of
SC pool, when compared to scaffolds which also preserved muscular cytoskeletal
structures. Finally, we showed that fibroblasts are indispensable to promote efficient
migration and myogenesis by muscle stem cells across the scaffolds in vitro. This data strongly support the use of xenogeneic acellular muscles as device to treat VML conditions in absence of donor cell implementation, as well as in vitro model for studying cell interplay during myogenesis
Determination of carbonyl compounds in exhaled breath by on-sorbent derivatization coupled with thermal desorption and gas chromatography-tandem mass spectrometry
A reliable method for the determination of carbonyl compounds in exhaled breath based on on-sorbent derivatization coupled with thermal desorption and gas chromatography-tandem mass spectrometry is described. The analytical performances were optimized for a mixture of C2-C9 aldehydes and C3-C9 ketones, particularly interesting for clinical applications, by using an internal standard and applying a 2^3 full factorial design. A volume of sample (250 ml) was loaded at 50 ml min-1 into a Tenax GR sorbent tube containing 130 nmol of O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride. All compounds showed a limit of detection lower than 200 pptv. The yield of the derivatization procedure was normalized by adding to the sample a known amount of 6D-acetone as an internal standard. This allowed halving the relative standard deviation to 10% and 15% for the mono-and di-carbonyl compounds, respectively, thus improving reliability. The optimized method was applied to the determination of carbonyl compounds in 12 breath samples collected from four patients suffering from heart failure during hospitalization
Ultrapermeable Polymers of Intrinsic Microporosity (PIMs) Containing Spirocyclic Units with Fused Triptycenes
Polymers of intrinsic microporosity (PIMs), such as the archetypal spirobisindane-based PIM-1, are among the most promising new materials for making gas separation membranes with high permeance for potential use in high-throughput applications. Here it is shown that ultrapermeable PIMs can be prepared by fusing rigid and bulky triptycene (Trip) to the spirobisindane (SBI) unit. PIM-SBI-Trip and its copolymer with PIM-1 (PIM-1/SBI-Trip) are both ultrapermeable after methanol treatment (PCO2 > 20 000 Barrer). Old films, although less permeable, are more selective and therefore provide data that are close to the recently redefined Robeson upper bounds for the important CO2/CH4, CO2/N2, and O2/N2 gas pairs. Temperature-dependent permeation measurements and analysis of the entropic and energetic contributions of the gas transport parameters show that the enhanced performance of these polymers is governed by strong size-sieving character, mainly due to the energetic term of the diffusivity, and related to their high rigidity. Both polymers show a relatively weak pressure-dependence in mixed gas permeability experiments up to 6 bar, suggesting a potential use for CO2 capture from flue gas or for the upgrading of biogas
Comparison of sampling bags for the analysis of volatile organic compounds in breath
Nalophan, Tedlar and Cali-5-Bond polymeric bags were compared to determine the most suitable type for breath sampling and storage when volatile organic compounds are to be determined. Analyses were performed by thermal desorption gas chromatography mass spectrometry. For each bag, the release of contaminants and the chemical stability of a gaseous standard mixture containing eighteen organic compounds, as well as the CO2 partial pressure were assessed. The selected compounds were representative of breath constituents and belonged to different chemical classes (i.e. hydrocarbons, ketones, aldehydes, aromatics, sulfurs and esters). In the case of Nalophan, the influence of the surface-to-volume ratio, related to the bag's filling degree, on the chemical stability was also evaluated. Nalophan bags were found to be the most suitable in terms of contaminants released during storage (only 2-methyl-1,3-dioxalane), good sample stability (up to 24 h for both dry and humid samples), and very limited costs (about 1 for a 20 liter bag). The (film) surface-to-(sample) volume ratio was found to be an important factor affecting the stability of selected compounds, and therefore we recommended to fill the bag completely
mTOR inhibition leads to SRC-mediated EGFR internalisation and degradation in glioma cells
Epidermal Growth Factor receptor (EGFR) is a tyrosine kinase receptor widely expressed on the surface of numerous cell types, which activates several downstream signalling pathways involved in cell proliferation, migration and survival. EGFR alterations, such as overexpression or mutations, have been frequently observed in several cancers, including glioblastoma (GBM), and are associated to uncontrolled cell proliferation. Here we show that the inhibition of mammalian target of Rapamycin (mTOR) mediates EGFR delivery to lysosomes for degradation in GBM cells, independently of autophagy activation. Coherently with EGFR internalisation and degradation, mTOR blockade negatively affects the mitogen activated protein/extracellular signal-regulated kinase (MAPK)/ERK pathway. Furthermore, we provide evidence that Src kinase activation is required for EGFR internaliation upon mTOR inhibition. Our results further support the hypothesis that mTOR targeting may represent an effective therapeutic strategy in GBM management, as its inhibition results in EGFR degradation and in proliferative signal alteration
mTOR inhibition leads to SRC-mediated EGFR internalisation and degradation in glioma cells
Epidermal Growth Factor receptor (EGFR) is a tyrosine kinase receptor widely expressed on the surface of numerous cell types, which activates several downstream signalling pathways involved in cell proliferation, migration and survival. EGFR alterations, such as overexpression or mutations, have been frequently observed in several cancers, including glioblastoma (GBM), and are associated to uncontrolled cell proliferation. Here we show that the inhibition of mammalian target of Rapamycin (mTOR) mediates EGFR delivery to lysosomes for degradation in GBM cells, independently of autophagy activation. Coherently with EGFR internalisation and degradation, mTOR blockade negatively affects the mitogen activated protein/extracellular signal-regulated kinase (MAPK)/ERK pathway. Furthermore, we provide evidence that Src kinase activation is required for EGFR internaliation upon mTOR inhibition. Our results further support the hypothesis that mTOR targeting may represent an effective therapeutic strategy in GBM management, as its inhibition results in EGFR degradation and in proliferative signal alteration
The CF3TMS adduct of anthraquinone as a monomer for making polymers with potential as separation membranes
The readily prepared CF3TMS adduct of anthraquinone is shown to be an efficient monomer for superacid-catalysed step-growth polymerisations, as exemplified by its reaction with diphenyl ether. The resulting polymer (BTFMA-DPE) is produced rapidly, with high molecular mass, and shows promise as a gas separation membrane material
- …
