1,174 research outputs found
Multiple scattering of matter waves: an analytic model of the refractive index for atomic and molecular gases
We present an analytic model of the refractive index for matter waves
propagating through atomic or molecular gases. The model, which combines a WKB
treatment of the long range attraction with the Fraunhofer model treatment of
the short range repulsion, furnishes a refractive index in compelling agreement
with recent experiments of Jacquey et al. [Phys. Rev. Lett. 98, 240405 (2007)]
on Li atom matter waves passing through dilute noble gases. We show that the
diffractive contribution, which arises from scattering by a two dimensional
"hard core" of the potential, is essential for obtaining a correct imaginary
part of the refractive index.Comment: 5 pages, 1 figure, 2 table
An analytic model of rotationally inelastic collisions of polar molecules in electric fields
We present an analytic model of thermal state-to-state rotationally inelastic
collisions of polar molecules in electric fields. The model is based on the
Fraunhofer scattering of matter waves and requires Legendre moments
characterizing the "shape" of the target in the body-fixed frame as its input.
The electric field orients the target in the space-fixed frame and thereby
effects a striking alteration of the dynamical observables: both the phase and
amplitude of the oscillations in the partial differential cross sections
undergo characteristic field-dependent changes that transgress into the partial
integral cross sections. As the cross sections can be evaluated for a field
applied parallel or perpendicular to the relative velocity, the model also
offers predictions about steric asymmetry. We exemplify the field-dependent
quantum collision dynamics with the behavior of the Ne-OCS() and
Ar-NO() systems. A comparison with the close-coupling calculations
available for the latter system [Chem. Phys. Lett. \textbf{313}, 491 (1999)]
demonstrates the model's ability to qualitatively explain the field dependence
of all the scattering features observed
Quasiparticle Interference on the Surface of Topological Crystalline Insulator Pb(1-x)Sn(x)Se
Topological crystalline insulators represent a novel topological phase of
matter in which the surface states are protected by discrete point
group-symmetries of the underlying lattice. Rock-salt lead-tin-selenide alloy
is one possible realization of this phase which undergoes a topological phase
transition upon changing the lead content. We used scanning tunneling
microscopy (STM) and angle resolved photoemission spectroscopy (ARPES) to probe
the surface states on (001) PbSnSe in the topologically
non-trivial (x=0.23) and topologically trivial (x=0) phases. We observed
quasiparticle interference with STM on the surface of the topological
crystalline insulator and demonstrated that the measured interference can be
understood from ARPES studies and a simple band structure model. Furthermore,
our findings support the fact that PbSnSe and PbSe have
different topological nature.Comment: 5 pages, 4 figure
Extra Spin-Wave mode in Quantum Hall systems. Beyond the Skyrmion Limit
We report on the observation of a new spin mode in a quantum Hall system in
the vicinity of odd electron filling factors under experimental conditions
excluding the possibility of Skyrmion excitations. The new mode having
presumably zero energy at odd filling factors emerges at small deviations from
odd filling factors and couples to the spin-exciton. The existence of an extra
spin mode assumes a nontrivial magnetic order at partial fillings of Landau
levels surrounding quantum Hall ferromagnets other then the Skyrmion crystal.Comment: 9 pages, 4 figure
Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor
We propose an easy-to-build easy-to-detect scheme for realizing Majorana fermions at the ends of a chain of magnetic atoms on the surface of a superconductor. Model calculations show that such chains can be easily tuned between trivial and topological ground states. In the latter, spatially resolved spectroscopy can be used to probe the Majorana fermion end states. Decoupled Majorana bound states can form even in short magnetic chains consisting of only tens of atoms. We propose scanning tunneling microscopy as the ideal technique to fabricate such systems and to probe their topological properties
The use of titanium alloys for details of downhole hammers
The influence of cementation technology of titanium alloy Ti-Al-Mn on its wear resistance is studied. It is established that after lubrication a friction pair with mineral oil the wear resistance of the cemented titanium alloy is comparable to wear resistance of the tempered steel 12HN3A, and in water medium surpasses it by 1.5 times. Decrease in the tendency to seizure with steel is the main reason for increase of wear resistance of titanium alloy. Industrial tests of the ASH43 hammer have shown that the use of titanium alloys for the manufacture of hammer strikers allows to increase impact capacity by 1.5 times and to increase drilling rate by 30 % compared to hammers with steel strikers
Fourth Order Algorithms for Solving the Multivariable Langevin Equation and the Kramers Equation
We develop a fourth order simulation algorithm for solving the stochastic
Langevin equation. The method consists of identifying solvable operators in the
Fokker-Planck equation, factorizing the evolution operator for small time steps
to fourth order and implementing the factorization process numerically. A key
contribution of this work is to show how certain double commutators in the
factorization process can be simulated in practice. The method is general,
applicable to the multivariable case, and systematic, with known procedures for
doing fourth order factorizations. The fourth order convergence of the
resulting algorithm allowed very large time steps to be used. In simulating the
Brownian dynamics of 121 Yukawa particles in two dimensions, the converged
result of a first order algorithm can be obtained by using time steps 50 times
as large. To further demostrate the versatility of our method, we derive two
new classes of fourth order algorithms for solving the simpler Kramers equation
without requiring the derivative of the force. The convergence of many fourth
order algorithms for solving this equation are compared.Comment: 19 pages, 2 figure
Termination dependent topological surface states of the natural superlattice phase BiSe
We describe the topological surface states of BiSe, a compound in the
infinitely adaptive Bi-BiSe natural superlattice phase series,
determined by a combination of experimental and theoretical methods. Two
observable cleavage surfaces, terminating at Bi or Se, are characterized by
angle resolved photoelectron spectroscopy and scanning tunneling microscopy,
and modeled by ab-initio density functional theory calculations. Topological
surface states are observed on both surfaces, but with markedly different
dispersions and Kramers point energies. BiSe therefore represents the
only known compound with different topological states on differently terminated
surfaces.Comment: 5 figures references added Published in PRB:
http://link.aps.org/doi/10.1103/PhysRevB.88.08110
The nonlinear time-dependent response of isotactic polypropylene
Tensile creep tests, tensile relaxation tests and a tensile test with a
constant rate of strain are performed on injection-molded isotactic
polypropylene at room temperature in the vicinity of the yield point. A
constitutive model is derived for the time-dependent behavior of
semi-crystalline polymers. A polymer is treated as an equivalent network of
chains bridged by permanent junctions. The network is modelled as an ensemble
of passive meso-regions (with affine nodes) and active meso-domains (where
junctions slip with respect to their positions in the bulk medium with various
rates). The distribution of activation energies for sliding in active
meso-regions is described by a random energy model. Adjustable parameters in
the stress--strain relations are found by fitting experimental data. It is
demonstrated that the concentration of active meso-domains monotonically grows
with strain, whereas the average potential energy for sliding of junctions and
the standard deviation of activation energies suffer substantial drops at the
yield point. With reference to the concept of dual population of crystalline
lamellae, these changes in material parameters are attributed to transition
from breakage of subsidiary (thin) lamellae in the sub-yield region to
fragmentation of primary (thick) lamellae in the post-yield region of
deformation.Comment: 29 pages, 12 figure
- …
