86,056 research outputs found
Partonic Effects in Heavy Ion Collisions at RHIC
Effects of partonic interactions in heavy ion collisions at RHIC are studied
in a multiphase transport model (AMPT) that includes both initial partonic and
final hadronic interactions.It is found that a large parton scattering cross
section is needed to understand the measured elliptic flow of pions and
two-pion correlation function.Comment: 10 pages, 5 figures, Workshop on Quark and Hadron Dynamics, Budapest,
Hungary, March 3-7, 200
Indoor mould growth prediction using coupled computational fluid dynamics and mould growth model
This study investigates, using in-situ and numerical simulation experiments, airflow and hygrothermal distribution in a mechanically ventilated academic research facility with known cases of microbial proliferations. Microclimate parameters were obtained from in-situ experiments and used as boundary conditions and validation of the numerical experiments with a commercial computational fluid dynamics (CFD) analysis tool using the standard k–ε model. Good agreements were obtained with less than 10% deviations between the measured and simulated results. Subsequent upon successful validation, the model was used to investigate hygrothermal and airflow profile within the shelves holding stored components in the facility. The predicted in-shelf hygrothermal profile was superimposed on mould growth limiting curve earlier documented in the literature. Results revealed the growth of xerophilic species in most parts of the shelves. The mould growth prediction was found in correlation with the microbial investigation in the case-studied room reported by the authors elsewhere. Satisfactory prediction of mould growth in the room successfully proved that the CFD simulation can be used to investigate the conditions that lead to microbial growth in the indoor environment
The effects of protected beams and their connections on the fire resistance of composite buildings
According to full-scale fire tests, it is noticed that tensile membrane action within the concrete floor slabs plays an important role in affecting the fire resistance of composite buildings. It is well known that the development of tensile membrane actions relies on the vertical support along the edges of the slab panel. However, there is at present a lack of research into the influence of vertical supports on the tensile membrane actions of the floor slabs. In this paper, the performances of a generic three dimensional 45m x 45m composite floor subjected to ISO834 Fire and Natural Fire are investigated. Different vertical support conditions and three steel meshes are applied in order to assess the impact of vertical supports on tensile membrane action of floor slabs. Unlike other existing large scale modelling which assumes the connections behave as pinned or rigid for simplicity, two robust 2-node connection element models developed by the authors are used to model the behaviour of end-plate and partial end-plate connections of composite structures under fire conditions. The impact of connections on the 3D behaviour of composite floor is taken into consideration. The load-transfer mechanisms of composite floor when connections fail due to axial tension, vertical shear and bending are investigated. Based on the results obtained, some design recommendations are proposed to enhance the fire resistance of composite buildings
Field study on adaptive thermal comfort in typical air conditioned classrooms
This study investigates adaptive thermal comfort in air conditioned classrooms in Hong Kong. A field survey was conducted in several typical classrooms at the City University of Hong Kong. This survey covered objective measurement of thermal environment parameters and subjective human thermal responses. A total of 982 student volunteers participated in the investigation. The results indicate that students in light clothing (0.42 clo) have adapted to the cooler classroom environments. The neutral temperature is very close to the preferred temperature of approximately 24 °C. Based on the MTSV ranging between −0.5 and + 0.5, the comfort range is between 21.56 °C and 26.75 °C. The lower limit is below that of the ASHRAE standard. Of the predicted mean vote (PMV) and the University of California, Berkeley (UCB) model, the UCB model predictions agree better with the mean thermal sensation vote (MTSV). Also, the respective fit regression models of the MTSV versus each of the following: operative temperature (Top), PMV, and UCB were obtained. This study provides a better understanding of acceptable classroom temperatures
- …
