3,532 research outputs found
Recommended from our members
Waveform-level time-domain simulation comparison study of three shipboard power system architectures
Detailed waveform-level modeling and simulation of three alternative shipboard power system architectures is presented herein. The three system architectures are based on conventional 60Hz medium-voltage ac (MVAC), higherfrequency 240Hz medium-voltage ac (HFAC) and mediumvoltage dc (MVDC) technologies. To support the quantitative assessment and comparison of these three different power system architectures, each technology was modeled using a common representative, notional baseline ship. The baseline ship represents a multi-mission destroyer fitted with an 80MW next generation integrated power system (NGIPS). Modeling of each power system architecture is set forth along with simulation studies for three fault scenarios. Each of the three power system architectures was implemented within the MATLAB/ Simulink environment. Continuity of service was evaluated for each architecture along with a fault scenario using an operability metric. After a brief description of the three power system architectures and the operability metric, quantitative results are presented.Center for Electromechanic
One-Loop Renormalization of Higher-Derivative 2D Dilaton Gravity
A theory of higher-derivative 2D dilaton gravity which has its roots in the
massive higher-spin mode dynamics of string theory is suggested. The
divergences of the effective action to one-loop are calculated, both in the
covariant and in the conformal gauge. Some technical problems which appear in
the calculations are discussed. An interpretation of the theory as a particular
D=2 higher-derivative -model is given. For a specific case of
higher-derivative 2D dilaton gravity, which is one loop multiplicatively
renormalizable, static configurations corresponding to black holes are shown to
exist.Comment: 12 pages, LaTeX fil
Magnetic domain-wall velocity enhancement induced by a transverse magnetic field
Spin dynamics of field-driven domain walls (DWs) guided by Permalloy
nanowires are studied by high-speed magneto-optic polarimetry and numerical
simulations. DW velocities and spin configurations are determined as functions
of longitudinal drive field, transverse bias field, and nanowire width.
Nanowires having cross-sectional dimensions large enough to support vortex wall
structures exhibit regions of drive-field strength (at zero bias field) that
have enhanced DW velocity resulting from coupled vortex structures that
suppress oscillatory motion. Factor of ten enhancements of the DW velocity are
observed above the critical longitudinal drive-field (that marks the onset of
oscillatory DW motion) when a transverse bias field is applied. Nanowires
having smaller cross-sectional dimensions that support transverse wall
structures also exhibit a region of higher mobility above the critical field,
and similar transverse-field induced velocity enhancement but with a smaller
enhancement factor. The bias-field enhancement of DW velocity is explained by
numerical simulations of the spin distribution and dynamics within the
propagating DW that reveal dynamic stabilization of coupled vortex structures
and suppression of oscillatory motion in the nanowire conduit resulting in
uniform DW motion at high speed.Comment: 8 pages, 5 figure
Supersymmetric codimension-two branes and U(1)_R mediation in 6D gauged supergravity
We construct a consistent supersymmetric action for brane chiral and vector
multiplets in a six-dimensional chiral gauged supergravity. A nonzero brane
tension can be accommodated by allowing for a brane-localized Fayet-Iliopoulos
term proportional to the brane tension. When the brane chiral multiplet is
charged under the bulk U(1)_R, we obtain a nontrivial coupling to the extra
component of the U(1)_R gauge field strength as well as a singular scalar
self-interaction term. Dimensionally reducing to 4D on a football
supersymmetric solution, we discuss the implication of such interactions for
obtaining the U(1)_R D-term in the 4D effective supergravity. By assuming the
bulk gaugino condensates and nonzero brane F- and/or D-term for the uplifting
potential, we have all the moduli stabilized with a vanishing cosmological
constant. The brane scalar with nonzero R charge then gets a soft mass of order
the gravitino mass. The overall sign of the soft mass squared depends on the
sign of the R charge as well as whether the brane F- or D-term dominates.Comment: 28 pages, no figures, version to appear in JHE
How Do You Like Me in This: User Embodiment Preferences for Companion Agents
We investigate the relationship between the embodiment of an artificial companion and user perception and interaction with it. In a Wizard of Oz study, 42 users interacted with one of two embodiments: a physical robot or a virtual agent on a screen through a role-play of secretarial tasks in an office, with the companion providing essential assistance. Findings showed that participants in both condition groups when given the choice would prefer to interact with the robot companion, mainly for its greater physical or social presence. Subjects also found the robot less annoying and talked to it more naturally. However, this preference for the robotic embodiment is not reflected in the users’ actual rating of the companion or their interaction with it. We reflect on this contradiction and conclude that in a task-based context a user focuses much more on a companion’s behaviour than its embodiment. This underlines the feasibility of our efforts in creating companions that migrate between embodiments while maintaining a consistent identity from the user’s point of view
Supersymmetric codimension-two branes in six-dimensional gauged supergravity
We consider the six-dimensional Salam-Sezgin supergravity in the presence of
codimension-2 branes. In the case that the branes carry only tension, we
provide a way to supersymmetrise them by adding appropriate localised
Fayet-Iliopoulos terms and localised corrections to the Chern-Simons term and
modifying accordingly the fermionic supersymmetry transformations. The
resulting brane action has N=1 supersymmetry (SUSY). We find the axisymmetric
vacua of the system and show that one has unwarped background solutions with
"football"-shaped extra dimensions which always respect N=1 SUSY for any value
of the equal brane tensions, in contrast with the non-supersymmetric brane
action background. Finally, we generically find multiple zero modes of the
gravitino in this background and discuss how one could obtain a single chiral
zero mode present in the low energy spectrum.Comment: 21 pages, no figures, A sign error in the gauge potential at the
lower brane corrected and its consequent effect discusse
A continuous isotropic-nematic liquid crystalline transition of F-actin solutions
The phase transition from the isotropic (I) to nematic (N) liquid crystalline
suspension of F-actin of average length m or above was studied by local
measurements of optical birefringence and protein concentration. Both
parameters were detected to be continuous in the transition region, suggesting
that the I-N transition is higher than 1st order. This finding is consistent
with a recent theory by Lammert, Rokhsar & Toner (PRL, 1993, 70:1650),
predicting that the I-N transition may become continuous due to suppression of
disclinations. Indeed, few line defects occur in the aligned phase of F-actin.
Individual filaments in solutions of a few mg/ml F-actin undergo fast
translational diffusion along the filament axis, whereas both lateral and
rotational diffusions are suppressed.Comment: 4 pages with 4 figures. Submitted to Physical Review Letter
Two-loop effective potential in quantum field theory in curved space-time
The method of the calculation of effective potential (in linear curvature
approximation and at any loop) in massless gauge theory in curved space- time
by the direct solution of RG equation is given.The closed expression for
two-loop effective potential is obtained.Two-loop effective potential in scalar
self-interacting theory is written explicitly.Some comments about it as well as
about two-loop effective potential in standard model are presented.Comment: 8page
Self Consistent Molecular Field Theory for Packing in Classical Liquids
Building on a quasi-chemical formulation of solution theory, this paper
proposes a self consistent molecular field theory for packing problems in
classical liquids, and tests the theoretical predictions for the excess
chemical potential of the hard sphere fluid. Results are given for the self
consistent molecular fields obtained, and for the probabilities of occupancy of
a molecular observation volume. For this system, the excess chemical potential
predicted is as accurate as the most accurate prior theories, particularly the
scaled particle (Percus-Yevick compressibility) theory. It is argued that the
present approach is particularly simple, and should provide a basis for a
molecular-scale description of more complex solutions.Comment: 6 pages and 5 figure
Quantum dots with two electrons: Singlet-triplet transitions
The magnetic character of the ground-state of two electrons on a double
quantum dot, connected in series to left and right single-channel leads, is
considered. By solving exactly for the spectrum of the two interacting
electrons, it is found that the coupling to the continuum of propagating states
on the leads, in conjunction with the electron-electron interactions, may
result in a delocalization of the bound state of the two electrons. This, in
turn, reduces significantly the range of the Coulomb interaction parameters
over which singlet-triplet transitions can be realized. It is also found that
the coupling to the leads favors the singlet ground-state.Comment: 8 pages, submitted to Phys. Rev.
- …
