52 research outputs found

    Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci

    Get PDF
    Analysis of de novo CNVs (dnCNVs) from the full Simons Simplex Collection (SSC) (N = 2,591 families) replicates prior findings of strong association with autism spectrum disorders (ASDs) and confirms six risk loci (1q21.1, 3q29, 7q11.23, 16p11.2, 15q11.2-13, and 22q11.2). The addition of published CNV data from the Autism Genome Project (AGP) and exome sequencing data from the SSC and the Autism Sequencing Consortium (ASC) shows that genes within small de novo deletions, but not within large dnCNVs, significantly overlap the high-effect risk genes identified by sequencing. Alternatively, large dnCNVs are found likely to contain multiple modest-effect risk genes. Overall, we find strong evidence that de novo mutations are associated with ASD apart from the risk for intellectual disability. Extending the transmission and de novo association test (TADA) to include small de novo deletions reveals 71 ASD risk loci, including 6 CNV regions (noted above) and 65 risk genes (FDR ≤ 0.1). Through analysis of de novo mutations in autism spectrum disorder (ASD), Sanders et al. find that small deletions, but not large deletions/duplications, contain one critical gene. Combining CNV and sequencing data, they identify 6 loci and 65 genes associated with ASD. © 2015 Elsevier Inc

    The distribution, composition, and particle properties of Mars mesospheric aerosols: An analysis of CRISM visible/near-IR limb spectra with context from near-coincident MCS and MARCI observations

    No full text
    The Compact Reconnaissance Imaging Spectral Mapper (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) obtains pole-to-pole observations (i.e., full MRO orbits) of vertical profiles for visible/near-IR spectra (λ= 0.4–4.0 μm), which are ideally suited to identifying the composition and particle sizes of Mars ice and dust aerosols over 50–100 km altitudes in the Mars mesosphere. Within the coverage limitations of the CRISM limb data set, a distinct compositional dichotomy is found in Mars mesospheric ice aerosols. CO2 ice clouds appear during the aphelion period of Mars orbit (Solar Longitudes, Ls ∼ 0–160°) at low latitudes (∼20S–10N) over specific longitude regions (Meridiani, Valles Marineris) and at typical altitudes of 55–75 km. Apart from faint water ice hazes below 55 km, mesospheric H2O ice clouds are primarily restricted to the perihelion orbital range (Ls∼160 – 350°) at northern and southern mid-to-low latitudes with less apparent longitudinal dependences. Mars mesospheric CO2 clouds are presented in CRISM spectra with a surprisingly large range of particle sizes (cross section weighted radii, Reff = 0.3 to 2.2 μm). The smaller particle sizes (Reff ≤1 μm) appear concentrated near the spatial (latitude and altitude) boundaries of their global occurrences. CRISM spectra of mesospheric CO2 clouds also show evidence of iridescence, indicating very narrow particle size distributions (effective variance, Veff ∼ 0.03) and so very abrupt CO2 cloud nucleation. Furthermore, these clouds are sometimes accompanied by altitude coincident peaks in 1.27 μm O2 dayglow, which indicates very dry, cold regions of formation. Mesospheric water ice clouds generally exhibit small particle sizes (Reff = 0.1–0.3 μm), although larger particle sizes (Reff = 0.4–0.7 μm) appear infrequently. On average, water ice cloud particle sizes decrease with altitude over 50–80 km in the perihelion mesosphere. Water ice mass appears similar in clouds over a large range of observed cloud particle sizes, with particle number densities increasing to ∼10 cm−3 for Reff = 0.2 μm. Near coincident Mars Climate Sounder (MCS) temperature and aerosol profile measurements for a subset of CRISM mesospheric aerosol measurements indicate near saturation (H2O and CO2) conditions for ice clouds and distinct mesospheric temperature increases associated with mesospheric dust loading. Dayside (3 pm) mesospheric CO2 clouds with larger particle sizes (Reff ≥0.5 μm) scatter surface infrared emission in MCS limb infrared radiances, as well as solar irradiance in the MCS solar band channel. Scattering of surface infrared emission is most strikingly presented in nighttime (3 am) MCS observations at 55–60 km altitudes, indicating extensive mesospheric nighttime CO2 clouds with considerably larger particle sizes (Reff∼7 μm). Mesospheric CO2 ice clouds present cirrus-like waveforms over extensive latitude and longitude regions (10°×10°), as revealed in coincident Mars Color Imager (MARCI) nadir imaging. Solar tides, gravity waves, and the large orbital variation of the extended thermal structure of the Mars atmosphere influence all of these behaviors. Mesospheric dust aerosols appear infrequently over the non-global (planet encircling) dust storm era of the CRISM limb data set (2009–2016), and exhibit smaller particle sizes (Reff = 0.2–0.7 μm) relative to dust in the lower atmosphere. One isolated case of an aphelion (Ls = 96°) mesospheric dust layer with large dust particle sizes (Reff ∼2 μm) over Syria Planum may reflect high altitude, non-local transport of dust over elevated regions

    Right Heart Failure Following Left Ventricular Device Implantation: Natural History, Risk Factors, and Outcomes: An Analysis of the STS INTERMACS Database

    No full text
    Background: Our current understanding of right heart failure (RHF) post-left ventricular assist device (LVAD) is lacking. Recently, a new Interagency Registry for Mechanically Assisted Circulatory Support definition of RHF was introduced. Based on this definition, we investigated natural history, risk factors, and outcomes of post-LVAD RHF. Methods: Patients implanted with continuous flow LVAD between June 2, 2014, and June 30, 2016 and registered in the Interagency Registry for Mechanically Assisted Circulatory Support/Society of Thoracic Surgeons Database were included. RHF incidence and predictors, and survival after RHF were assessed. The manifestations of RHF which were separately analyzed were elevated central venous pressure, peripheral edema, ascites, and use of inotropes. Results: Among 5537 LVAD recipients (mean 57±13 years, 49% destination therapy, support 18.9 months) prevalence of 1-month RHF was 24%. Of these, RHF persisted at 12 months in 5.3%. In contrast, de novo RHF, first identified at 3 months, occurred in 5.1% and persisted at 12 months in 17% of these, and at 6 months occurred in 4.8% and persisted at 12 months in 25%. Higher preimplant blood urea nitrogen (ORs,1.03-1.09 per 5 mg/dL increase; P<0.0001), previous tricuspid valve repair/replacement (ORs, 2.01-10.09; P<0.001), severely depressed right ventricular systolic function (ORs,1.17-2.20; P=0.004); and centrifugal versus axial LVAD (ORs,1.15-1.78; P=0.001) represented risk factors for RHC incidence at 3 months. Patients with persistent RHF at 3 months had the lowest 2-year survival (57%) while patients with de novo RHF or RHF which resolved by 3 months had more favorable survival outcomes (75% and 78% at 2 years, respectively; P<0.001). Conclusions: RHF at 1 or 3 months post-LVAD was a common and frequently transient condition, which, if resolved, was associated with relatively favorable prognosis. Conversely, de novo, late RHF post-LVAD (>6 months) was more frequently a persistent disorder and associated with increased mortality. The 1-, 3-, and 6-month time points may be used for RHF assessment and risk stratification in LVAD recipients. © 2022 Lippincott Williams and Wilkins. All rights reserved
    corecore