1,585 research outputs found
Exponential Metric Fields
The Laser Interferometer Space Antenna (LISA) mission will use advanced
technologies to achieve its science goals: the direct detection of
gravitational waves, the observation of signals from compact (small and dense)
stars as they spiral into black holes, the study of the role of massive black
holes in galaxy evolution, the search for gravitational wave emission from the
early Universe. The gravitational red-shift, the advance of the perihelion of
Mercury, deflection of light and the time delay of radar signals are the
classical tests in the first order of General Relativity (GR). However, LISA
can possibly test Einstein's theories in the second order and perhaps, it will
show some particular feature of non-linearity of gravitational interaction. In
the present work we are seeking a method to construct theoretical templates
that limit in the first order the tensorial structure of some metric fields,
thus the non-linear terms are given by exponential functions of gravitational
strength. The Newtonian limit obtained here, in the first order, is equivalent
to GR.Comment: Accepted for publication in Astrophysics and Space Science, 17 page
Association of HLA types A1-B8-DR3 and B27 with rapid and slow progression of HIV disease
We examined how HLA types A1-B8-DR3 and B27 were related to progression of clinical disease and rate of loss of CD4 lymphocytes in the Edinburgh City Hospital cohort of HIV-positive patients, mainly injection drug users. Patients (n = 692) were prospectively followed from 1985 through March 1994. Accurately estimated seroconversion times were determined retrospectively for a subgroup of 313 (45%). Of 262 patients (39%) who were fully or partially HLA typed, 155 (50%) had known seroconversions. Of 34 patients typed positive for A1-B8-DR3, 29 progressed to CDC stage IV, 22 to AIDS and 20 died. Twelve patients were typed positive for B27; six of these progressed to CDC stage IV, one to AIDS and none died. In a proportional hazards analysis of the 313 patients with known seroconversions, A1-B8-DR3 was significantly associated with covariate-adjusted relative risks of 3.7 (95% CI 1.9-7.2), 3.1 (1.6-6.0) and 1.9 (1.1-3.2) for progression from seroconversion to death, AIDS and CDC stage IV, respectively. Events for B27 were too rare to include B27 in analyses to death and AIDS, but B27 was significantly associated with slower progression to CDC stage IV (0.3, CI 0.1-0.9). Random effects growth curve models were used to estimate individual rates of loss of square root CD4 count and loss of CD4 percentage, for 603 and 617 patients, respectively. A1-B8-DR3 was associated with rapid loss of both markers (p=0.02 and p = 0.01, respectively); B27 was associated with slow loss of both markers (p=0.04 and p<0.005
A high efficiency, low background detector for measuring pair-decay branches in nuclear decay
We describe a high efficiency detector for measuring electron-positron pair
transitions in nuclei. The device was built to be insensitive to gamma rays and
to accommodate high overall event rates. The design was optimized for total
pair kinetic energies up to about 7 MeV.Comment: Accepted for publication by Nucl. Inst. & Meth. in Phys. Res. A (NIM
A
Application of Time Transfer Function to McVittie Spacetime: Gravitational Time Delay and Secular Increase in Astronomical Unit
We attempt to calculate the gravitational time delay in a time-dependent
gravitational field, especially in McVittie spacetime, which can be considered
as the spacetime around a gravitating body such as the Sun, embedded in the
FLRW (Friedmann-Lema\^itre-Robertson-Walker) cosmological background metric. To
this end, we adopt the time transfer function method proposed by Le
Poncin-Lafitte {\it et al.} (Class. Quant. Grav. 21:4463, 2004) and Teyssandier
and Le Poncin-Lafitte (Class. Quant. Grav. 25:145020, 2008), which is
originally related to Synge's world function and enables to
circumvent the integration of the null geodesic equation. We re-examine the
global cosmological effect on light propagation in the solar system. The
round-trip time of a light ray/signal is given by the functions of not only the
spacial coordinates but also the emission time or reception time of light
ray/signal, which characterize the time-dependency of solutions. We also apply
the obtained results to the secular increase in the astronomical unit, reported
by Krasinsky and Brumberg (Celest. Mech. Dyn. Astron. 90:267, 2004), and we
show that the leading order terms of the time-dependent component due to
cosmological expansion is 9 orders of magnitude smaller than the observed value
of , i.e., ~[m/century]. Therefore, it is not possible
to explain the secular increase in the astronomical unit in terms of
cosmological expansion.Comment: 13 pages, 2 figures, accepted for publication in General Relativity
and Gravitatio
Bulk Scale Factor at Very Early Universe
In this paper we propose a higher dimensional Cosmology based on FRW model
and brane-world scenario. We consider the warp factor in the brane-world
scenario as a scale factor in 5-dimensional generalized FRW metric, which is
called as bulk scale factor, and obtain the evolution of it with space-like and
time-like extra dimensions. It is then showed that, additional space-like
dimensions can produce exponentially bulk scale factor under repulsive strong
gravitational force in the empty universe at a very early stage.Comment: 7 pages, October 201
Complementarity and the uncertainty relations
We formulate a general complementarity relation starting from any Hermitian
operator with discrete non-degenerate eigenvalues. We then elucidate the
relationship between quantum complementarity and the Heisenberg-Robertson's
uncertainty relation. We show that they are intimately connected. Finally we
exemplify the general theory with some specific suggested experiments.Comment: 9 pages, 4 figures, REVTeX, uses epsf.sty and multicol.st
Elastic and scattering at LHC
We discuss the possibility of measuring leading neutron production at the
LHC. These data could be used to extract from it and
cross-sections. In this note we give some estimates for the case of elastic
cross-sections and discuss related problems and prospects.Comment: 26 pages, 25 figures, to be published, minor text correction
Friedmann-like equations for High Energy Area of Universe
In this paper, evolution of the high energy area of universe, through the
scenario of 5 dimensional (5D) universe, has been studied. For this purpose, we
solve Einstein equations for 5D metric and 5D perfect fuid to derive
Friedmann-like equations. Then we obtain the evolution of scale factor and
energy density with respect to both space-like and time-like extra dimensions.
We obtain the novel equations for the space-like extra dimension and show that
the matter with zero pressure cannot exist in the bulk. Also, for dark energy
fuid and vacuum fluid, we have both accelerated expansion and contraction in
the bulk.Comment: 9 pages, Accepted to publication in IJTP 26 June 2012. arXiv admin
note: substantial text overlap with arXiv:1202.497
Prospects in the orbital and rotational dynamics of the Moon with the advent of sub-centimeter lunar laser ranging
Lunar Laser Ranging (LLR) measurements are crucial for advanced exploration
of the laws of fundamental gravitational physics and geophysics. Current LLR
technology allows us to measure distances to the Moon with a precision
approaching 1 millimeter. As NASA pursues the vision of taking humans back to
the Moon, new, more precise laser ranging applications will be demanded,
including continuous tracking from more sites on Earth, placing new CCR arrays
on the Moon, and possibly installing other devices such as transponders, etc.
Successful achievement of this goal strongly demands further significant
improvement of the theoretical model of the orbital and rotational dynamics of
the Earth-Moon system. This model should inevitably be based on the theory of
general relativity, fully incorporate the relevant geophysical processes, lunar
librations, tides, and should rely upon the most recent standards and
recommendations of the IAU for data analysis. This paper discusses methods and
problems in developing such a mathematical model. The model will take into
account all the classical and relativistic effects in the orbital and
rotational motion of the Moon and Earth at the sub-centimeter level. The new
model will allow us to navigate a spacecraft precisely to a location on the
Moon. It will also greatly improve our understanding of the structure of the
lunar interior and the nature of the physical interaction at the core-mantle
interface layer. The new theory and upcoming millimeter LLR will give us the
means to perform one of the most precise fundamental tests of general
relativity in the solar system.Comment: 26 pages, submitted to Proc. of ASTROCON-IV conference (Princeton
Univ., NJ, 2007
Tritium Beta Decay, Neutrino Mass Matrices and Interactions Beyond the Standard Model
The interference of charge-changing interactions, weaker than the V-A
Standard Model (SM) interaction and having a different Lorentz structure, with
that SM interaction, can, in principle, produce effects near the end point of
the Tritium beta decay spectrum which are of a different character from those
produced by the purely kinematic effect of neutrino mass expected in the
simplest extension of the SM. We show that the existence of more than one mass
eigenstate can lead to interference effects at the end point that are stronger
than those occurring over the entire spectrum. We discuss these effects both
for the special case of Dirac neutrinos and the more general case of Majorana
neutrinos and show that, for the present precision of the experiments, one
formula should suffice to express the interference effects in all cases.
Implications for "sterile" neutrinos are noted.Comment: 32 pages, LaTeX, 6 figures, PostScript; full discussion and changes
in notation from Phys. Lett. B440 (1998) 89, nucl-th/9807057; submitted to
Phys. Rev.
- …
