19 research outputs found
Developments in Nanoparticles Enhanced Biofuels and Solar Energy in Malaysian Perspective: A Review of State of the Art
The rapid rise in global oil prices, the scarcity of petroleum sources, and environmental concerns have all created severe issues. As a result of the country's rapid expansion and financial affluence, Malaysia's energy consumption has skyrocketed. Biodiesel and solar power are currently two of the most popular alternatives to fossil fuels in Malaysia. These two types of renewable energy sources appear to be viable options because of their abundant availability together with environmental and performance competence to highly polluting and fast depleting fossil fuels. The purpose of adopting renewable technology is to expand the nation's accessibility to a reliable and secure power supply. The current review article investigates nonconventional energy sources added with nanosized metal particles called as nanomaterials including biodiesel and solar, as well as readily available renewable energy options. Concerning the nation's energy policy agenda, the sources of energy demand are also investigated. The article evaluates Malaysia's existing position in renewable energy industries, such as biodiesel and solar, as well as the impact of nanomaterials. This review article discusses biodiesel production, applications, and government policies in Malaysia, as well as biodiesel consumption and recent developments in the bioenergy sector, such as biodiesel property modifications utilizing nanoparticle additions. In addition, the current review study examines the scope of solar energy, different photovoltaic concentrators, types of solar energy harvesting systems, photovoltaic electricity potential in Malaysia, and the experimental setup of solar flat plate collectors (FPC) with nanotechnology
Home exposure to Arabian incense (bakhour) and asthma symptoms in children: a community survey in two regions in Oman
<p>Abstract</p> <p>Background</p> <p>Incense burning has been reported to adversely affect respiratory health. The aim of this study was to explore whether exposure to bakhour contributes to the prevalence of asthma and/or triggers its symptoms in Omani children by comparing two Omani regions with different prevalence of asthma.</p> <p>Methods</p> <p>A randomly selected sample of 10 years old schoolchildren were surveyed using an Arabic version of ISAAC Phase II questionnaires with the addition of questions concerning the use and effect of Arabian incense on asthma symptoms. Current asthma was defined as positive response to wheeze in the past 12 months or positive response to "ever had asthma" together with a positive response to exercise wheeze or night cough in the past 12 months. Simple and multivariable logistic regression analyses were performed to estimate the effect of bakhour exposure and other variables on current asthma diagnosis and parents' response to the question: "Does exposure to bakhour affect your child breathing?"</p> <p>Results</p> <p>Of the 2441 surveyed children, 15.4% had current asthma. Bakhour use more than twice a week was three times more likely to affect child breathing compared to no bakhour use (adjusted OR 3.01; 95% CI 2.23–4.08) and this effect was 2.55 times higher in asthmatics (adjusted OR 2.55; 95% CI 1.97–3.31) compared to non-asthmatics. In addition, bakhour caused worsening of wheeze in 38% of the asthmatics, making it the fourth most common trigger factor after dust (49.2%), weather (47.6%) and respiratory tract infections (42.2%). However, there was no significant association between bakhour use and the prevalence of current asthma (adjusted OR 0.87; 95% CI 0.63–1.20).</p> <p>Conclusion</p> <p>Arabian incense burning is a common trigger of wheezing among asthmatic children in Oman. However, it is not associated with the prevalence asthma.</p
Incense smoke: clinical, structural and molecular effects on airway disease
In Asian countries where the Buddhism and Taoism are mainstream religions, incense burning is a daily practice. A typical composition of stick incense consists of 21% (by weight) of herbal and wood powder, 35% of fragrance material, 11% of adhesive powder, and 33% of bamboo stick. Incense smoke (fumes) contains particulate matter (PM), gas products and many organic compounds. On average, incense burning produces particulates greater than 45 mg/g burned as compared to 10 mg/g burned for cigarettes. The gas products from burning incense include CO, CO2, NO2, SO2, and others. Incense burning also produces volatile organic compounds, such as benzene, toluene, and xylenes, as well as aldehydes and polycyclic aromatic hydrocarbons (PAHs). The air pollution in and around various temples has been documented to have harmful effects on health. When incense smoke pollutants are inhaled, they cause respiratory system dysfunction. Incense smoke is a risk factor for elevated cord blood IgE levels and has been indicated to cause allergic contact dermatitis. Incense smoke also has been associated with neoplasm and extracts of particulate matter from incense smoke are found to be mutagenic in the Ames Salmonella test with TA98 and activation. In order to prevent airway disease and other health problem, it is advisable that people should reduce the exposure time when they worship at the temple with heavy incense smokes, and ventilate their house when they burn incense at home
Household incense burning and children's respiratory health: A cohort study in Hong Kong
Mining Undergraduate Students’ Code Repositories: Insights from Interdisciplinary Software Projects
Retinoic acid synergizes ATO-mediated cytotoxicity by precluding Nrf2 activity in AML cells
Background: Standard therapy for acute promyelocytic leukaemia (APL) includes retinoic acid (all-trans retinoic acid (ATRA)), which promotes differentiation of promyelocytic blasts. Although co-administration of arsenic trioxide (ATO) with ATRA has emerged as an effective option to treat APL, the molecular basis of this effect remains unclear. Methods: Four leukaemia cancer human models (HL60, THP-1, NBR4 and NBR4-R2 cells) were treated either with ATO alone or ATO plus ATRA. Cancer cell survival was monitored by trypan blue exclusion and DEVDase activity assays. Gene and protein expression changes were assessed by RT-PCR and western blot. Results: ATO induced an antioxidant response characterised by Nrf2 nuclear translocation and enhanced transcription of downstream target genes (that is, HO-1, NQO1, GCLM, ferritin). In cells exposed to ATO plus ATRA, the Nrf2 nuclear translocation was prevented and cytotoxicity was enhanced. HO-1 overexpression reversed partially the cytotoxicity by ATRA-ATO in HL60 cells. The inhibitory effects of ATRA on ATO-mediated responses were not observed in either the ATRA-resistant NB4-R2 cells or in NB4 cells pre-incubated with the RARα antagonist Ro-41-52-53. Conclusions: The augmented cytotoxicity observed in leukaemia cells following combined ATO-ATRA treatment is likely due to inhibition of Nrf2 activity, thus explaining the efficacy of combined ATO-ATRA treatment in the APL therapy. © 2014 Cancer Research UK
