153,062 research outputs found
Effective Charge and Spin Hamiltonian for the Quarter-Filled Ladder Compound -NaVO
An effective intra- and inter-ladder charge-spin hamiltonian for the
quarter-filled ladder compound -NaVO has been derived by using
the standard canonical transformation method. In the derivation, it is clear
that a finite inter-site Coulomb repulsion is needed to get a meaningful result
otherwise the perturbation becomes ill-defined. Various limiting cases
depending on the values of the model parameters have been analyzed in detail
and the effective exchange couplings are estimated. We find that the effective
intra-ladder exchange may become ferromagnetic for the case of zig-zag charge
ordering in a purely electronic model.
We estimate the magnitude of the effective inter-rung Coulomb repulsion in a
ladder and find it to be about one-order of magnitude too small in order to
stabilize charge-ordering.Comment: Eur. Phys. J. B (submitted
Recommended from our members
The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition.
Charybdotoxin (CTX) is a peptide of known structure that inhibits Shaker K+ channels by a pore-blocking mechanism. Point mutagenesis of all 30 solvent-exposed residues identified the part of the CTX molecular surface making contact with the receptor in the K+ channel. All close-contact residues are clustered in a well-defined interaction surface; the shape of this surface implies that the outer opening of the Shaker channel conduction pore abruptly widens to a 25 x 35 A plateau. A mutagenic scan of the S5-S6 linker sequence of the Shaker K+ channel identified those channel residues influencing CTX binding affinity. The Shaker residues making the strongest contribution to toxin binding are located close to the pore-lining sequence, and more distant residues on both sides of this region influence CTX binding weakly, probably by an electrostatic mechanism. Complementary mutagenesis of both CTX and Shaker suggests that Shaker-F425 contacts a specific area near T8 and T9 on the CTX molecular surface. This contact point constrains Shaker-F425 to be located at a 20 A radial distance from the pore axis and 10-15 A above the "floor" of the CTX receptor
Series active variable geometry suspension application to comfort enhancement
This paper explores the potential of the Series Active Variable Geometry Suspension (SAVGS) for comfort and road holding enhancement. The SAVGS concept introduces significant nonlinearities associated with the rotation of the mechanical link that connects the chassis to the spring-damper unit. Although conventional linearization procedures implemented in multi-body software packages can deal with this configuration, they produce linear models of reduced applicability. To overcome this limitation, an alternative linearization approach based on energy conservation principles is proposed and successfully applied to one corner of the car, thus enabling the use of linear robust control techniques. An H∞ controller is synthesized for this simplified quarter-car linear model and tuned based on the singular value decomposition of the system's transfer matrix. The proposed control is thoroughly tested with one-corner and full-vehicle nonlinear multi-body models. In the SAVGS setup, the actuator appears in series with the passive spring-damper and therefore it would typically be categorized as a low bandwidth or slow active suspension. However, results presented in this paper for an SAVGS-retrofitted Grand Tourer show that this technology has the potential to also improve the high frequency suspension functions such as comfort and road holding
A Generalized Ginzburg-Landau Approach to Second Harmonic Generation
We develop a generalized Ginzburg-Landau theory for second harmonic
generation (SHG) in magnets by expanding the free energy in terms of the order
parameter in the magnetic phase and the susceptibility tensor in the
corresponding high-temperature phase. The non-zero components of the SHG
susceptibility in the ordered phase are derived from the symmetries of the
susceptibility tensor in the high-temperature phase and the symmetry of the
order parameter. In this derivation, the dependence of the SHG susceptibility
on the order parameter follows naturally, and therefore its nonreciprocal
optical properties.
We examine this phenomenology for the magnetoelectric compound CrO as
well as for the ferroelectromagnet YMnO.Comment: European Journal of Physics B (accepted
Superfluid and insulating phases of fermion mixtures in optical lattices
The ground state phase diagram of fermion mixtures in optical lattices is
analyzed as a function of interaction strength, fermion filling factor and
tunneling parameters. In addition to standard superfluid, phase-separated or
coexisting superfluid/excess-fermion phases found in homogeneous or
harmonically trapped systems, fermions in optical lattices have several
insulating phases, including a molecular Bose-Mott insulator (BMI), a
Fermi-Pauli (band) insulator (FPI), a phase-separated BMI/FPI mixture or a
Bose-Fermi checkerboard (BFC). The molecular BMI phase is the fermion mixture
counterpart of the atomic BMI found in atomic Bose systems, the BFC or BMI/FPI
phases exist in Bose-Fermi mixtures, and lastly the FPI phase is particular to
the Fermi nature of the constituent atoms of the mixture.Comment: 4 pages with 3 figures (Published version
Polymer/Nanocrystal Hybrid Solar Cells: Influence of Molecular Precursor Design on Film Nanomorphology, Charge Generation and Device Performance
In this work, molecular tuning of metal xanthate precursors is shown to have a marked effect on the heterojunction morphology of hybrid poly(3-hexylthiophene-2,5-diyl) (P3HT)/CdS blends and, as a result, the photochemical processes and overall performance of in situ fabricated hybrid solar cells. A series of cadmium xanthate complexes is synthesized for use as in situ precursors to cadmium sulfide nanoparticles in hybrid P3HT/CdS solar cells. The formation of CdS domains is studied by simultaneous GIWAXS (grazing incidence wide-angle X-ray scattering) and GISAXS (grazing incidence small-angle X-ray scattering), revealing knowledge about crystal growth and the formation of different morphologies observed using TEM (transmission electron microscopy). These measurements show that there is a strong relationship between precursor structure and heterojunction nanomorphology. A combination of TAS (transient absorption spectroscopy) and photovoltaic device performance measurements is used to show the intricate balance required between charge photogeneration and percolated domains in order to effectively extract charges to maximize device power conversion efficiencies. This study presents a strong case for xanthate complexes as a useful route to designing optimal heterojunction morphologies for use in the emerging field of hybrid organic/inorganic solar cells, due to the fact that the nanomorphology can be tuned via careful design of these precursor materials
Construction IT in 2030: a scenario planning approach
Summary: This paper presents a scenario planning effort carried out in order to identify the possible futures
that construction industry and construction IT might face. The paper provides a review of previous research in
the area and introduces the scenario planning approach. It then describes the adopted research methodology.
The driving forces of change and main trends, issues and factors determined by focusing on factors related to
society, technology, environment, economy and politics are discussed. Four future scenarios developed for the
year 2030 are described. These scenarios start from the global view and present the images of the future world.
They then focus on the construction industry and the ICT implications. Finally, the preferred scenario
determined by the participants of a prospective workshop is presented
- …
