1,008 research outputs found
Smart Agriculture: A Fruit Flower Cluster Detection Strategy in Apple Orchards Using Machine Vision and Learning
Featured Application: The results from this work demonstrate the effective use of machine vision and learning technologies to support the development and implementation of smart agriculture. This paper presents the application of machine vision and learning techniques to detect and identify the number of flower clusters on apple trees leading to the ability to predict the potential yield of apples. A new field robot was designed and built to collect and build a dataset of 1500 images of apples trees. The trained model produced a cluster precision of 0.88 or 88% and a percentage error of 14% over 106 trees running the mobile vehicle on both sides of the trees. The detection model was predicting less than the actual amount but the fruit flower count is still significant in that it can give the researcher information on the estimated growth and production of each tree with respect to the actions applied to each fruit tree. A bias could be included to compensate for the average undercount. The resulting F1-Score of the object detection model was 80%, which is similar to other research methods ranging from an F1-Score of 77.3% to 84.1%. This paper helps lay the foundation for future application of machine vision and learning techniques within apple orchards or other fruit tree settings
Smart agriculture: Development of a skid-steer autonomous robot with advanced model predictive controllers
The agricultural domain has been experiencing extensive automation interest over the past decade. The established process for measuring physiological and morphological traits (phenotypes) of crops is labour-intensive and error-prone. In this paper, a mobile robotic platform, namely The Autonomous Robot for Orchard Surveying (AROS), was developed to automate the process of collecting spatial and visual data autonomously. Furthermore, six different control frameworks are presented to evaluate the feasibility of using a kinematic model in agricultural environments. The kinematic model does not consider wheel slippage or any forces associated with dynamic motion. Thus, the following six controllers are evaluated: Proportional-Derivative (PD) controller, Sliding Mode Controller (SMC), Control-Lyapunov Function (CLF), Nonlinear Model Predictive Controller (NMPC), Tube-Based Nonlinear Model Predictive Controller (TBNMPC), and Model Predictive Sliding Mode Control (MPSMC). This paper provides insight into the degree of disturbance rejection that the mentioned control architectures can achieve in outdoor environments. Experimental results validate that all control architectures are capable of rejecting the present disturbances associated with unmodelled dynamics and wheel slip on soft ground conditions. Additionally, the optimal-based controllers managed to perform better than the non-optimal controllers. Performance improvements of the TBNMPC of up to 209.72% are realized when compared to non-optimal methods. Results also show that the non-optimal controllers had low performance due to the underactuated constraint present in the kinematic model
The Sphaleron Rate in SU(N) Gauge Theory
The sphaleron rate is defined as the diffusion constant for topological
number NCS = int g^2 F Fdual/32 pi^2. It establishes the rate of equilibration
of axial light quark number in QCD and is of interest both in electroweak
baryogenesis and possibly in heavy ion collisions. We calculate the
weak-coupling behavior of the SU(3) sphaleron rate, as well as making the most
sensible extrapolation towards intermediate coupling which we can. We also
study the behavior of the sphaleron rate at weak coupling at large Nc.Comment: 18 pages with 3 figure
GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy
We propose to perform a continuously scanning all-sky survey from 200 keV to
80 MeV achieving a sensitivity which is better by a factor of 40 or more
compared to the previous missions in this energy range. The Gamma-Ray Imaging,
Polarimetry and Spectroscopy (GRIPS) mission addresses fundamental questions in
ESA's Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS
has its focus on the evolving, violent Universe, exploring a unique energy
window. We propose to investigate -ray bursts and blazars, the
mechanisms behind supernova explosions, nucleosynthesis and spallation, the
enigmatic origin of positrons in our Galaxy, and the nature of radiation
processes and particle acceleration in extreme cosmic sources including pulsars
and magnetars. The natural energy scale for these non-thermal processes is of
the order of MeV. Although they can be partially and indirectly studied using
other methods, only the proposed GRIPS measurements will provide direct access
to their primary photons. GRIPS will be a driver for the study of transient
sources in the era of neutrino and gravitational wave observatories such as
IceCUBE and LISA, establishing a new type of diagnostics in relativistic and
nuclear astrophysics. This will support extrapolations to investigate star
formation, galaxy evolution, and black hole formation at high redshifts.Comment: to appear in Exp. Astron., special vol. on M3-Call of ESA's Cosmic
Vision 2010; 25 p., 25 figs; see also www.grips-mission.e
Cooling of Dark-Matter Admixed Neutron Stars with density-dependent Equation of State
We propose a dark-matter (DM) admixed density-dependent equation of state
where the fermionic DM interacts with the nucleons via Higgs portal. Presence
of DM can hardly influence the particle distribution inside neutron star (NS)
but can significantly affect the structure as well as equation of state (EOS)
of NS. Introduction of DM inside NS softens the equation of state. We explored
the effect of variation of DM mass and DM Fermi momentum on the NS EOS.
Moreover, DM-Higgs coupling is constrained using dark matter direct detection
experiments. Then, we studied cooling of normal NSs using APR and DD2 EOSs and
DM admixed NSs using dark-matter modified DD2 with varying DM mass and Fermi
momentum. We have done our analysis by considering different NS masses. Also DM
mass and DM Fermi momentum are varied for fixed NS mass and DM-Higgs coupling.
We calculated the variations of luminosity and temperature of NS with time for
all EOSs considered in our work and then compared our calculations with the
observed astronomical cooling data of pulsars namely Cas A, RX J0822-43, 1E
1207-52, RX J0002+62, XMMU J17328, PSR B1706-44, Vela, PSR B2334+61, PSR
B0656+14, Geminga, PSR B1055-52 and RX J0720.4-3125. It is found that APR EOS
agrees well with the pulsar data for lighter and medium mass NSs but cooling is
very fast for heavier NS. For DM admixed DD2 EOS, it is found that for all
considered NS masses, all chosen DM masses and Fermi momenta agree well with
the observational data of PSR B0656+14, Geminga, Vela, PSR B1706-44 and PSR
B2334+61. Cooling becomes faster as compared to normal NSs in case of
increasing DM mass and Fermi momenta. It is infered from the calculations that
if low mass super cold NSs are observed in future that may support the fact
that heavier WIMP can be present inside neutron stars.Comment: 24 Pages, 15 Figures and 2 Tables. Version accepted in The European
Physical Journal
Bulk Axions, Brane Back-reaction and Fluxes
Extra-dimensional models can involve bulk pseudo-Goldstone bosons (pGBs)
whose shift symmetry is explicitly broken only by physics localized on branes.
Reliable calculation of their low-energy potential is often difficult because
it requires details of the stabilization of the extra dimensions. In rugby ball
solutions, for which two compact extra dimensions are stabilized in the
presence of only positive-tension brane sources, the effects of brane
back-reaction can be computed explicitly. This allows the calculation of the
shape of the low-energy pGB potential and response of the extra dimensional
geometry as a function of the perturbing brane properties. If the
pGB-dependence is a small part of the total brane tension a very general
analysis is possible, permitting an exploration of how the system responds to
frustration when the two branes disagree on what the proper scalar vacuum
should be. We show how the low-energy potential is given by the sum of brane
tensions (in agreement with common lore) when only the brane tensions couple to
the pGB. We also show how a direct brane coupling to the flux stabilizing the
extra dimensions corrects this result in a way that does not simply amount to
the contribution of the flux to the brane tensions. We calculate the mass of
the would-be zero mode, and briefly describe several potential applications,
including a brane realization of `natural inflation,' and a dynamical mechanism
for suppressing the couplings of the pGB to matter localized on the branes.
Since the scalar can be light enough to be relevant to precision tests of
gravity (in a technically natural way) this mechanism can be relevant to
evading phenomenological bounds.Comment: 36 pages, JHEP styl
Combined search for the quarks of a sequential fourth generation
Results are presented from a search for a fourth generation of quarks
produced singly or in pairs in a data set corresponding to an integrated
luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in
2011. A novel strategy has been developed for a combined search for quarks of
the up and down type in decay channels with at least one isolated muon or
electron. Limits on the mass of the fourth-generation quarks and the relevant
Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a
simple extension of the standard model with a sequential fourth generation of
fermions. The existence of mass-degenerate fourth-generation quarks with masses
below 685 GeV is excluded at 95% confidence level for minimal off-diagonal
mixing between the third- and the fourth-generation quarks. With a mass
difference of 25 GeV between the quark masses, the obtained limit on the masses
of the fourth-generation quarks shifts by about +/- 20 GeV. These results
significantly reduce the allowed parameter space for a fourth generation of
fermions.Comment: Replaced with published version. Added journal reference and DO
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
f(R) theories
Over the past decade, f(R) theories have been extensively studied as one of
the simplest modifications to General Relativity. In this article we review
various applications of f(R) theories to cosmology and gravity - such as
inflation, dark energy, local gravity constraints, cosmological perturbations,
and spherically symmetric solutions in weak and strong gravitational
backgrounds. We present a number of ways to distinguish those theories from
General Relativity observationally and experimentally. We also discuss the
extension to other modified gravity theories such as Brans-Dicke theory and
Gauss-Bonnet gravity, and address models that can satisfy both cosmological and
local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in
Relativity, Published version, Comments are welcom
An integrated network visualization framework towards metabolic engineering applications
Background
Over the last years, several methods for the phenotype simulation of microorganisms, under specified genetic and environmental conditions have been proposed, in the context of Metabolic Engineering (ME). These methods provided insight on the functioning of microbial metabolism and played a key role in the design of genetic modifications that can lead to strains of industrial interest. On the other hand, in the context of Systems Biology research, biological network visualization has reinforced its role as a core tool in understanding biological processes. However, it has been scarcely used to foster ME related methods, in spite of the acknowledged potential.
Results
In this work, an open-source software that aims to fill the gap between ME and metabolic network visualization is proposed, in the form of a plugin to the OptFlux ME platform. The framework is based on an abstract layer, where the network is represented as a bipartite graph containing minimal information about the underlying entities and their desired relative placement. The framework provides input/output support for networks specified in standard formats, such as XGMML, SBGN or SBML, providing a connection to genome-scale metabolic models. An user-interface makes it possible to edit, manipulate and query nodes in the network, providing tools to visualize diverse effects, including visual filters and aspect changing (e.g. colors, shapes and sizes). These tools are particularly interesting for ME, since they allow overlaying phenotype simulation results or elementary flux modes over the networks.
Conclusions
The framework and its source code are freely available, together with documentation and other resources, being illustrated with well documented case studies.This work is partially funded by ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT (Portuguese Foundation for Science and Technology) within project ref. COMPETE FCOMP-01-0124-FEDER-015079 and the FCT Strategic Project PEst-OE/EQB/LA0023/2013. The work of PV is funded by PhD grant ref. SFRH/BDE/51442/2011
- …
