14,677 research outputs found
Flavor-symmetry Breaking with Charged Probes
We discuss the recombination of brane/anti-brane pairs carrying brane
charge in . These configurations are dual to co-dimension one
defects in the super-Yang-Mills description. Due to their
charge, these defects are actually domain walls in the dual gauge theory,
interpolating between vacua of different gauge symmetry. A pair of unjoined
defects each carry localized dimensional fermions and possess a global
flavor symmetry while the recombined brane/anti-brane pairs
exhibit only a diagonal U(N). We study the thermodynamics of this
flavor-symmetry breaking under the influence of external magnetic field.Comment: 21 pages, 10 figure
Conditional Sampling for Max-Stable Processes with a Mixed Moving Maxima Representation
This paper deals with the question of conditional sampling and prediction for
the class of stationary max-stable processes which allow for a mixed moving
maxima representation. We develop an exact procedure for conditional sampling
using the Poisson point process structure of such processes. For explicit
calculations we restrict ourselves to the one-dimensional case and use a finite
number of shape functions satisfying some regularity conditions. For more
general shape functions approximation techniques are presented. Our algorithm
is applied to the Smith process and the Brown-Resnick process. Finally, we
compare our computational results to other approaches. Here, the algorithm for
Gaussian processes with transformed marginals turns out to be surprisingly
competitive.Comment: 35 pages; version accepted for publication in Extremes. The final
publication is available at http://link.springer.co
Seasonal differences in the photochemistry of the South Pacific: A comparison of observations and model results from PEM-Tropics A and B
A time-dependent photochemical box model is used to examine the photochemistry of the equatorial and southern subtropical Pacific troposphere with aircraft data obtained during two distinct seasons: the Pacific Exploratory Mission-Tropics A (PEM-Tropics A) field campaign in September and October of 1996 and the Pacific Exploratory Mission-Tropics B (PEM-Tropics B) campaign in March and April of 1999. Model-predicted values were compared to observations for selected species (e.g., NO2, OH, HO2) with generally good agreement. Predicted values of HO2 were larger than those observed in the upper troposphere, in contrast to previous studies which show a general underprediction of HO2 at upper altitudes. Some characteristics of the budgets of HOx, NOx, and peroxides are discussed. The integrated net tendency for O3 is negative over the remote Pacific during both seasons, with gross formation equal to no more than half of the gross destruction. This suggests that a continual supply of O3 into the Pacific region throughout the year must exist in order to maintain O3 levels. Integrated net tendencies for equatorial O3 showed a seasonality, with a net loss of 1.06×1011 molecules cm-2 s-1 during PEM-Tropics B (March) increasing by 50% to 1.60×1011 molecules cm-2 s-1 during PEM-Tropics A (September). The seasonality over the southern subtropical Pacific was somewhat lower, with losses of 1.21×1011 molecules cm-2 s-1 during PEM-Tropics B (March) increasing by 25% to 1.51×1011 molecules cm-2 s-1 during PEM-Tropics A (September). While the larger net losses during PEM-Tropics A were primarily driven by higher concentrations of O3, the ability of the subtropical atmosphere to destroy O3 was ∼30% less effective during the PEM-Tropics A (September) campaign due to a drier atmosphere and higher overhead O3 column amounts. Copyright 2001 by the American Geophysical Union
Holographic Metamagnetism, Quantum Criticality, and Crossover Behavior
Using high-precision numerical analysis, we show that 3+1 dimensional gauge
theories holographically dual to 4+1 dimensional Einstein-Maxwell-Chern-Simons
theory undergo a quantum phase transition in the presence of a finite charge
density and magnetic field. The quantum critical theory has dynamical scaling
exponent z=3, and is reached by tuning a relevant operator of scaling dimension
2. For magnetic field B above the critical value B_c, the system behaves as a
Fermi liquid. As the magnetic field approaches B_c from the high field side,
the specific heat coefficient diverges as 1/(B-B_c), and non-Fermi liquid
behavior sets in. For B<B_c the entropy density s becomes non-vanishing at zero
temperature, and scales according to s \sim \sqrt{B_c - B}. At B=B_c, and for
small non-zero temperature T, a new scaling law sets in for which s\sim
T^{1/3}. Throughout a small region surrounding the quantum critical point, the
ratio s/T^{1/3} is given by a universal scaling function which depends only on
the ratio (B-B_c)/T^{2/3}.
The quantum phase transition involves non-analytic behavior of the specific
heat and magnetization but no change of symmetry. Above the critical field, our
numerical results are consistent with those predicted by the Hertz/Millis
theory applied to metamagnetic quantum phase transitions, which also describe
non-analytic changes in magnetization without change of symmetry. Such
transitions have been the subject of much experimental investigation recently,
especially in the compound Sr_3 Ru_2 O_7, and we comment on the connections.Comment: 23 pages, 8 figures v2: added ref
Recommended from our members
An assessment of western North Pacific ozone photochemistry based on springtime observations from NASA's PEM-West B (1994) and TRACE-P (2001) field studies
The current study provides a comparison of the photochemical environments for two NASA field studies focused on the western North Pacific (PEM-West-B (PWB) and TRACE-P (TP)). These two studies were separated in calendar time by approximately 7 years. Both studies were carried out under springtime conditions, with PWB being launched in 1994 and TP being deployed in 2001 (i.e., 23 February - 15 March 1994 and 10 March-15 April 2001, respectively). Because of the 7-year time separation, these two studies presented a unique scientific opportunity to assess whether evidence could be found to support the Department of Energy\u27s projections in 1997 that increases in anthropogenic emissions from East Asia could reach 5%/yr. Such projections would lead one to the conclusion that a significant shift in the atmospheric photochemical properties of the western North Pacific would occur. To the contrary, the findings from this study support the most recent emission inventory data [Streets et al., 2003] in that they show no significant systematic trend involving increases in any O3 precursor species and no evidence for a significant shift in the level of photochemical activity over the western North Pacific. This conclusion was reached in spite of there being real differences in the concentration levels of some species as well as differences in photochemical activity between PWB and TP. However, nearly all of these differences were shown to be a result of a near 3-week shift in TP\u27s sampling window relative to PWB, thus placing it later in the spring season. The photochemical enhancements seen during TP were most noticeable for latitudes in the range of 25-45°N. Most important among these were increases in J(O1D), OH, and HO2 and values for photochemical ozone formation and destruction, all of which were typically two times larger than those calculated for PWB. A comparison of these airborne results with ozonesonde data from four Japanese stations provided further evidence showing that the 3-week shift in the respective sampling windows of PWB and TP was a likely cause for the differences seen in O3 levels and in photochemical activity between the two airborne studies. Copyright 2003 by the American Geophysical Union
Degenerate fermion gas heating by hole creation
Loss processes that remove particles from an atom trap leave holes behind in
the single particle distribution if the trapped gas is a degenerate fermion
system. The appearance of holes increases the temperature and we show that the
heating is (i) significant if the initial temperature is well below the Fermi
temperature , and (ii) increases the temperature to
after half of the system's lifetime, regardless of the initial temperature. The
hole heating has important consequences for the prospect of observing
Cooper-pairing in atom traps.Comment: to be published in PR
Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity.
Homeostatic signalling systems ensure stable but flexible neural activity and animal behaviour. Presynaptic homeostatic plasticity is a conserved form of neuronal homeostatic signalling that is observed in organisms ranging from Drosophila to human. Defining the underlying molecular mechanisms of neuronal homeostatic signalling will be essential in order to establish clear connections to the causes and progression of neurological disease. During neural development, semaphorin-plexin signalling instructs axon guidance and neuronal morphogenesis. However, semaphorins and plexins are also expressed in the adult brain. Here we show that semaphorin 2b (Sema2b) is a target-derived signal that acts upon presynaptic plexin B (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the neuromuscular junction in Drosophila. Further, we show that Sema2b-PlexB signalling regulates presynaptic homeostatic plasticity through the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin. We propose that semaphorin-plexin signalling is an essential platform for the stabilization of synaptic transmission throughout the developing and mature nervous system. These findings may be relevant to the aetiology and treatment of diverse neurological and psychiatric diseases that are characterized by altered or inappropriate neural function and behaviour
Composite Fermion Metals from Dyon Black Holes and S-Duality
We propose that string theory in the background of dyon black holes in
four-dimensional anti-de Sitter spacetime is holographic dual to conformally
invariant composite Dirac fermion metal. By utilizing S-duality map, we show
that thermodynamic and transport properties of the black hole match with those
of composite fermion metal, exhibiting Fermi liquid-like. Built upon
Dirac-Schwinger-Zwanziger quantization condition, we argue that turning on
magnetic charges to electric black hole along the orbit of Gamma(2) subgroup of
SL(2,Z) is equivalent to attaching even unit of statistical flux quanta to
constituent fermions. Being at metallic point, the statistical magnetic flux is
interlocked to the background magnetic field. We find supporting evidences for
proposed holographic duality from study of internal energy of black hole and
probe bulk fermion motion in black hole background. They show good agreement
with ground-state energy of composite fermion metal in Thomas-Fermi
approximation and cyclotron motion of a constituent or composite fermion
excitation near Fermi-point.Comment: 30 pages, v2. 1 figure added, minor typos corrected; v3. revised
version to be published in JHE
"Chiamo uomo chi \ue8 padrone delle sue lingue". modelli di plurilinguismo da Lampedusa in su.
Il plurilinguismo dei nuovi migranti viene analizzato insieme al ruolo della lingua nella costruzione di modelli di societ\ue0 inclusiva e plural
- …
